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Data

Our comment is based on reanalyses of the dissimilarity data from Experiments 1

and 2 in Hout, Goldinger, and Ferguson (2013). In Experiment 1 four perceptual stimulus

sets were used (Wheels 2D, Wheels 3D, Bugs 2D, Bugs 3D). Each set comprised of 25

(2D) or 27 (3D) artificially constructed visual stimuli varying along two or three perceptual

dimensions. In Experiment 2 two conceptual stimulus sets were used (Categorical Animals,

Continuous Animals). Each set comprised of 25 animal names varying along two salient

(Categorical) or less-defined (Continuous) dimensions. The combination of six stimulus sets

with two methods for obtaining data (SpAM vs. Pairwise) yields 12 sets of proximity data.

The proximity data resulting from SpAM and from the pairwise method differ in two

notable respects. (i) More participants generated proximities using SpAM than using the

pairwise method because the former takes less time and Hout et al. (2013) had participants

provide several SpAM data sets in a single session. (ii) The pairwise proximities are coarser

than the SpAM proximities because the resolution of the former is limited to the number

of scale points of the Likert scale, while the latter are expressed as the number of pixels

that separate two stimuli on a computer screen. In some analyses we equated the data

sets in terms of the number of participants or in terms of their granularity (by rounding off

the number of pixels). We will refer to these equated data sets as SpAM Reduced Subjects

(SpAM RS) and SpAM Reduced Granularity (SpAM RG), respectively, akin to the similarly

named simulations in Hout et al. (2013).

The caveats for SpAM were identified using the very data Hout et al. (2013) used

to make a case for SpAM. Although this exempts us from accusations of selection bias

against SpAM, we admit the employed materials/data are not ideally suited for a systematic

comparison of proximity data collection methods, either. In such an investigation it would

have to be ensured that stimulus nature, number of stimuli, dimensionality, and number of

participants are not confounded. We urge readers to take these considerations into account

when reviewing the analyses presented in Hout et al. (2013) and in these Supplemental

Materials.
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Caveat 1: SpAM favors spatial over featural representations

Background

The distributional characteristics of proximity data reveal the type of representation

that is appropriate of a particular set of stimuli. The most widely used characteristics are

skewness and elongation (Sattath & Tversky, 1977) and centrality and reciprocity (Tversky

& Hutchinson, 1986). We restrict our discussion to skewness and centrality, because unlike

elongation and reciprocity, the results of these diagnostics are not affected by differences

in the granularity of proximity data, a characteristic on which SpAM and pairwise data

differ. Positively skewed dissimilarity data accord well with spatial representations, while

negatively skewed dissimilarity data accord better with featural representations (Sattath

& Tversky, 1977). Centrality values higher than 2 are taken to indicate that the data are

better represented by featural models than by spatial ones (Tversky & Hutchinson, 1986).

Evidence

First, we computed the skewness of each participant’s dissimilarity data and averaged

the resulting values across all participants within each combination of method and stimulus

set. The average skewness values are listed in Table 1 (average skewness) along with the

results of independent samples t-tests for method differences. Depending on the outcome

of Levene’s test for equality of variances, the variances were assumed to be equal or not.

The SpAM dissimilarity data tend to be more positively skewed than the pairwise data.

This finding is in line with known distributional characteristics of distances obtained from

spatial representations such as the one used in SpAM (Sattath & Tversky, 1977). For both

the conceptual stimulus sets (Categorical and Continuous Animals) the average skewness

values differ significantly between methods. While the dissimilarity data obtained with the

pairwise method tend to be negatively skewed, the SpAM dissimilarities have a positive

skew.



Table 1: Skewness of the dissimilarity data.

average skewness skewness average

set Pairwise SpAM variances t df p Pairwise SpAM

Wheels 2D .09 .16 assumed equal −.74 98 .23 −.12 −.74

Wheels 3D .12 .26 no assumption −1.33 16.07 .10 −.05 −.51

Bugs 2D .26 .28 no assumption −.11 9.50 .46 .03 .00

Bugs 3D −.17 .27 assumed equal −4.94 109 < .001 −.35 −.34

Categorical Animals −.99 .13 no assumption −5.76 12.48 < .001 −.91 −.83

Continuous Animals −.71 .21 no assumption −6.22 17.65 < .001 −.80 −1.32

Note: All tests, hypothesis is Pairwise < SpAM. Average skewness is average of individual dissimilarities’ skewness. Skewness average

is average dissimilarities’ skewness.
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Second, we computed the centrality of each participant’s dissimilarity data using

formula (1) from Tversky and Hutchinson (1986) where S = {0, 1, . . . , n} is the set of stimuli

andNi reflects the focality of i withNi = 0 if there is no element in S whose nearest neighbor

is i and Ni = n if i is the nearest neighbor of all other stimuli. Because of the occurrence of

multiple ties in the pairwise dissimilarity data and its potential influence on the results, the

computation was repeated 100 times, each time breaking ties at random. Averages across

participants and replications are presented in Table 2 (average centrality). Centrality is

significantly higher for pairwise than for SpAM dissimilarities, with the highest discrepancy

again arising for the conceptual stimulus sets (Categorical and Continuous Animals). This

finding is in line with known distributional characteristics of distances obtained from spatial

representations as well. Low-dimensional spatial representations, such as the ones used in

SpAM, tend to have centrality values under 2 (Tversky & Hutchinson, 1986).

C =
1

n+ 1

n∑
i=0

N2
i (1)

Conceptual and perceptual stimuli have been taken to be best represented by featural

and spatial representations, respectively, based on the negative skew of the former, but not

the latter (Dry & Storms, 2009; Pruzansky, Tversky, & Carroll, 1982) and on centrality

values higher than 2 for the former, but not the latter (Tversky & Hutchinson, 1986).

While the distributional characteristics of the pairwise proximity data from Hout et al.

(2013) support this distinction, the SpAM proximity data do not. SpAM consistently

yields data with properties that are characteristic of low-dimensional spatial representations.

The pairwise method proofs able to yield data that do not necessarily demonstrate these

characteristics. This indicates that the data patterns that can be obtained with SpAM are

restricted.



Table 2: Centrality of the dissimilarity data.

average centrality centrality average

set Pairwise SpAM variances t df p Pairwise SpAM

Wheels 2D 1.82 1.61 no assumption 7.04 45.91 < .001 1.87 1.48

Wheels 3D 1.82 1.63 assumed equal 4.18 100 < .001 1.48 1.52

Bugs 2D 1.88 1.52 assumed equal 6.20 89 < .001 1.64 1.32

Bugs 3D 1.80 1.60 assumed equal 3.86 109 < .001 1.62 1.67

Categorical Animals 2.06 1.50 assumed equal 8.87 105 < .001 2.36 1.40

Continuous Animals 2.01 1.52 assumed equal 9.23 102 < .001 2.12 1.48

Note: All tests, hypothesis is Pairwise > SpAM. Average centrality is average of individual dissimilarities’ centrality. Centrality

average is average dissimilarities’ centrality.
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Tables 1 and 2 also list the skewness (skewness average) and centrality (centrality

average) of the averaged dissimilarity data. The averaging does not impact the centrality

results much, but it does change the skewness results considerably. The averaged data are

less positively skewed for both the pairwise method and SpAM, but the difference with the

individual data is most pronounced for SpAM. This points toward a discrepancy between

the average and the individual SpAM data. It appears that the average across individuals

in the case of SpAM might not necessarily be representative of all of the individual data.

We address this finding in further detail in Caveats 2 and 3.

Caveat 2: SpAM is a crude instrument for measuring many

dimensions

Background

Individual differences scaling (INDSCAL) structurally incorporates individual differ-

ences (Carroll & Chang, 1970; Takane, Young, & De Leeuw, 1977). It assumes a stimulus

configuration that is common to all individuals (the group stimulus space), but allows that

the dimensions are differently weighted by the individuals to accommodate different prox-

imity judgments. In that sense, the group stimulus space is a mere theoretical construct (it

does not match any data), used to arrive at representations of individuals by multiplying

the coordinates of the stimuli in the group stimulus space with (positive) individual weights.

This has the effect of shrinking or stretching the shared stimulus space to yield individual

configurations.

The INDSCAL model is most commonly used to study individual or group differences

(for an overview of the range of applications, see Takane, 2007). Here it can also be used to

see how the proximity data collection methods affect the proximity data that are generated.

In the case of the Wheels 3D and Bugs 3D sets, where there are three salient dimensions, the

INDSCAL model can be employed to establish whether SpAM participants will convey all

three dimensions in their organization of stimuli on the two-dimensional computer screen

or will restrict themselves to only conveying two. In the former case, we would expect
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the individual weights to be estimated around 1 for all three dimensions. The individuals’

representations will then correspond to the three-dimensional group stimulus space. In the

latter case, we would expect the individual weights to be around 1 for two of the dimensions,

but much smaller than 1 for the remaining dimension. If we assume that all three dimensions

are apparent to the participants, they would then effectively be dropping a dimension in

conveying their proximity data.

Evidence

For both the Wheels 3D set and the Bugs 3D set from Hout et al. (2013), we con-

ducted a simultaneous individual differences scaling of the proximity data obtained with

the pairwise method and with SpAM. To this end we reduced the granularity of the SpAM

proximity data (akin to the SpAM Reduced Granularity simulations in Hout et al., 2013).

Differences between the two methods can easily be conveyed in this manner. We used IND-

SCAL with the non-metric and stress 1 options to obtain a group stimulus and a weight

space in three dimensions. The group stimulus space is a configuration of points, one for

each of the 27 stimuli in a set, which represents the Euclidean distances between the stim-

uli. The weight space contains a point for each individual who contributed proximity data,

indicating the weights s/he attributed to the dimensions of the group stimulus space. There

are 102 such weight vectors for the Wheels 3D set (15 pairwise participants + 87 SpAM

participants). There are 111 weight vectors for the Bugs 3D set (13 pairwise participants

+ 98 SpAM participants).

For both sets the three-dimensional group space reflects the three-dimensional nature

of the stimuli. For Wheels 3D Dimension 1 corresponds to the thickness of the stimuli, Di-

mension 2 corresponds to their hue, and Dimension 3 corresponds to the angle of the spoke

in the wheels. For Bugs 3D Dimension 1 corresponds to the number of legs, Dimension

2 corresponds to the shading of the back and head, and Dimension 3 corresponds to the

curvature of the antennae. The corresponding dimension weights are depicted in Figure 1

for Wheels 3D and in Figure 2 for Bugs 3D. The dimension weights for pairwise partici-
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pants are depicted in red and are found to be centered around coordinate (1,1,1) indicating

that the three-dimensional group representation is a good reflection of their individual

representations. That is, the pairwise participants appeared to employ all three stimulus

dimensions when providing judgments of inter-stimulus dissimilarity. There is much more

variability among the dimension weights for the SpAM participants. Notably, there is a

considerable number of SpAM participants found in the corners of the weight space indi-

cating that two of the three stimulus dimensions were emphasized during the arrangement

of stimuli in terms of dissimilarity. The two-dimensional nature of SpAM appears to bring

a large number of participants to focus on only two dimensions of variation when judging

the stimuli (assuming that all three stimulus dimensions are apparent to the participants,

which is tenable given the manner in which the stimuli were constructed and the obser-

vation that the pairwise participants recognize all three dimensions). These observations

are confirmed by the results of Levene’s tests for equality of variances of the SpAM and

pairwise dimension weights. For Wheels 3D the null hypothesis that there is no difference

in the variances of the dimension weights for the two methods was rejected for both Di-

mension 1 (F (1, 100) = 4.37, p = .04, ratio= 5.26), Dimension 2 (F (1, 100) = 5.77, p = .02,

ratio= 3.43) and Dimension 3 (F (1, 100) = 5.03, p = .03, ratio= 5.33). For Bugs 3D, the

null hypothesis of equal variance was rejected for Dimension 1 (F (1, 109) = 4.71, p = .03,

ratio= 4.82) and Dimension 3 (F (1, 109) = 8.29, p = .005, ratio= 9.77), but not for Dimen-

sion 2 (F (1, 109) = 3.57, p = .06, ratio= 4.60).
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Figure 1. Dimension weights of the SpAM Reduced Granularity individuals (black) and the pairwise individuals (red) for Wheels 3D.
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Figure 2. Dimension weights of the SpAM Reduced Granularity individuals (black) and the pairwise individuals (red) for Bugs 3D.
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In addition, those SpAM participants with dimension weights around (1,1,1) tend

to have a higher stress per subject (an indication of an participant’s badness of fit) than

those located more in the corners of the space. The Spearman correlation between a SpAM

individual’s stress per subject and the distance of the individual’s weights from (1,1,1) is

-.69 for Wheels 3D and -.70 for Bugs 3D (both p < .0001). These correlations indicate

that participants struggled to convey the three stimulus dimensions in a two-dimensional

arrangement. If we restrict our investigation of stress per subject to those SpAM individuals

whose weights are not further removed from (1,1,1) than the furthest pairwise individual

is, the stress per subject of the SpAM individuals is significantly greater than the stress per

subject of the pairwise individuals (Wheels 3D: t(83) = 1.77, p = .04, one-tailed; Bugs 3D:

t(65) = 2.78, p < .01, one-tailed). SpAM participants who wanted to communicate all three

dimensions thus could not fully accomplish this in the two-dimensional arrangement they

had available. Note that the pairwise individuals are in the minority in both INDSCAL

analyses. Therefore there is no reason to suspect that the representations are biased toward

them.

Caveat 3: Burdens on the reliability of average SpAM data

Background

While in some MDS applications individual differences constitute the topic of interest

(as dealt with in Caveat 2), other applications favor an analysis of the average data, aiming

to uncover the structure that is shared among participants. The differences between indi-

viduals are then considered random errors and the purpose of the averaging is to reduce this

error. The reliability of the average reflects how well the differences between individuals

have been cancelled out. It has as its basis a correlation between the averages across two

halves of the participants. If the individual differences have been averaged out sufficiently,

the two halves should correlate strongly, indicating that the average is reproducible with

a sample of equal size and thus is a good reflection of the structure participants share.

A low split-half correlation indicates that the averages are considerably influenced by de-
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viating individuals and calls for the recruitment of additional participants to cancel out

these influences and make for a more representative estimate of the group average (Lord

& Novick, 1968). We show that there are more individual differences among SpAM than

among pairwise participants and that the negative impact this has on the reliability of the

average proximity data needs to be overcome by increasing the sample size.

Evidence

First, we calculated the correlation of individual MDS distances with the group MDS

distances. The latter was obtained by averaging the individual dissimilarity data prior

to scaling. For both the individual and group scalings we used non-metric MDS with

stress 1 as an objective function to obtain Euclidean distances in two-dimensional spaces,

except for the Wheels 3D and Bugs 3D stimulus sets where we employed three-dimensional

spaces. The correlations were then z-transformed (Fisher’s z transformation) and subjected

to independent samples t-tests of the hypothesis that the correlations resulting from the

pairwise method are greater than the correlations resulting from SpAM. The results listed

in Table 3 show that the individual solutions tend to differ more from the group solution for

SpAM than for the pairwise method for all stimulus sets, except Wheels 2D and Bugs 2D. For

Wheels 2D (t(47.48) = −2.34, p = .01, one-tailed) and Bugs 2D (t(25.91) = −1.89, p = .035,

one-tailed) the reverse holds.



Table 3: Mean correlations of individual MDS distances with group MDS distances

set Pairwise SpAM variances t df p

Wheels 2D .44 .60 no assumption −2.34 47.48 .99

Wheels 3D .61 .41 assumed equal 4.33 100 < .001

Bugs 2D .72 .83 no assumption −1.89 25.91 .97

Bugs 3D .62 .42 no assumption 2.50 13.29 .01

Categorical Animals .50 .03 assumed equal 1.97 105 .03

Continuous Animals .29 −.02 no assumption 3.14 18.61 .003

Note: All tests, hypothesis is Pairwise > SpAM.
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The extent to which the average across individuals is reliable, is quantified by the split-

half correlation r (the correlation between the average across one half of the participants and

the average across the other half of the participants) corrected with the Spearman-Brown

formula (Lord & Novick, 1968), averaged across 10,000 random splits of the dissimilarity

data:

ρ =
2r

1 + r
(2)

The resulting reliability estimates are always higher for SpAM than for the pairwise

method (Table 4), but more participants generated proximities using SpAM than using the

pairwise method. The direction of the reliability difference changes when we equate the

number of participants for both data collection methods. From the SpAM dissimilarities

we selected a random subset of the data corresponding to the number of participants who

provided data using the pairwise method and calculated the reliability. This procedure

was repeated 100 times. The average reliability across these 100 replications is reported

under SpAM RS (short for Reduced Subjects) in Table 4 for each of the six stimulus sets.

Except for Wheels 2D (t(99) = 18.12, p = 1), it is lower than when the same number of

participants provide proximities using the pairwise method according to a one-sample t-test

(t = −25.64, t = −6.52, t = −28.62, t = −17.70, t = −33.89, respectively) with df = 99 and

p < .001.



Table 4: Reliability of the average dissimilarity data.

# participants reliability of the average

set # stimuli Pairwise SpAM Pairwise SpAM SpAM RS k

Wheels 2D 25 13 87 .76 .97 .83 .65

Wheels 3D 27 15 87 .90 .95 .77 2.69

Bugs 2D 25 10 81 .85 .97 .80 1.42

Bugs 3D 27 13 98 .91 .95 .73 3.74

Categorical Animals 25 13 94 .91 .97 .83 2.07

Continuous Animals 25 17 87 .86 .91 .67 3.03

Note: SpAM RS = SpAM Reduced Subjects.
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Lord and Novick (1968) provide a formula for computing from an observed reliability

the required number of participants to arrive at a desired reliability:

k =
ρD(1− ρO)

ρO ∗ (1− ρD)
(3)

We take as the desired reliability ρD the estimated reliability of the pairwise method

and for the observed reliability ρO the estimated reliability of SpAM RS. The last column of

Table 4 indicates the resulting value for k, the factor with which the number of participants

needs to be multiplied. Except for Wheels 2D more participants are required. Across

stimulus sets the average value for k measures 2.27, indicating that about two times the

number of SpAM participants are required to arrive at the reliability level of the pairwise

method.
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