
1

Appendix A
Detection thresholds in quiet

Absolute detection thresholds for all experiments are given in Table A1, broken down by age. Although there was
a general trend for younger children to exhibit higher thresholds, in no cases were the differences between groups
significant [all p > 0.05]. Furthermore, the group-differences in quiet thresholds were trivial in size compared to
the differences in masking, which were typically an order of magnitude greater.

Also shown in Table A1 are the number of individuals excluded based on their threshold in quiet (N.B.:
additional children were excluded due to missing data, caused other by a lack of time or non-compliance. These
data are not shown here). Exactly why some individuals performed poorly is unknown. Acute hearing problems
were evident in a minority of individuals, and mild hearing loss due to non-cognitive etiologies is not uncommon
in children (Zielhuis, Rach, van den Bosch, & van den Broek, 1990). However, in many cases inattentiveness or
a lack of interest provided a more parsimonious explanation. Exactly how such general inattentiveness relates to
more specific deficits in selective attention (if indeed it does) is an interesting question, but one that falls outside
the scope of the present study.

Threshold (dB SPL)
Experiment Age n µ σ

Experiment I 5 − 6 11 (2) 12.5 3.9
7 − 8 17 (0) 10.4 5.7
9 − 11 13 (0) 11.4 5.0
adults 15 (0) 8.6 6.5

Experiment II 4 − 7 28 (7) 13.0 5.8
8 − 11 20 (2) 11.6 5.0

Experiment III 4 − 7 38 (10) 9.9 5.2
8 − 11 16 (2) 8.9 4.0

Table A1. Means and standard deviations for absolute detection thresholds in quiet, across all Experiments. Figures in
parentheses indicates the number of additional children who were excluded from all analyses based on the detection thresholds
in quiet (> 20 dB HL; see General Methods for details). These individuals were not included in the calculation of group mean
threshold, µ, or its standard deviation, σ.

Appendix B
MATLAB code for weight estimation simulations

The listing below provides code in which decision weights are repeatedly estimated using multiple logistic regres-
sion, given a simulated observer with no response bias and a known weighting function. This allows estimates
of decision weights to be assessed as a function of the paradigm (number of trials), stimulus (target level and
standard deviation), and observer (weight function, internal noise magnitude). Note that the simulation is only a
simplified approximation to the present experiment, and some aspects (e.g., the adaptive tracking algorithm) have
been omitted for clarity.

2

1 function [] = exampleWeightsSim()
% simulate weight estimates, under various conditions

% 1. User params
5 clear all

weights = [0 0 .25 .5 .25 0 0]; % sum to 1
wIdeal = [0 0 0 1 0 0 0]; % ideal weights
targLvl = [30 15]; % target [mean std] (in dB)
nTrials = 500; % per weight measurement

10 nSimulations = 1000; % n Monte Carlo simulations

% 2. Estimate weights
wEst = nan(nSimulations, length(weights));
efficiencyEst = nan(nSimulations, 1);

15 efficiencyAct = nan(nSimulations, 1);
for i=1:nSimulations

% estimate weights
wEst(i,:) = estimateWeights(targLvl, weights, nTrials);
% compute rms efficiency

20 efficiencyEst(i) = 1 - sqrt(mean((wIdeal - wEst(i,:)).^2));
efficiencyAct(i) = 1 - sqrt(mean((wIdeal - weights).^2));

end

% 3. Plot data
25 set(0,'DefaultTextInterpreter ','latex '); % init plot options

figure('Units','centimeters ', 'Position',[10 10 25 6]);
hold on;

stem(weights);
plot(wEst(i,:), 'k:');

30 text(1,1, sprintf('$\\eta_{Est}$ = %1.2f', efficiencyEst(i)));
text(1,.8, sprintf('$\\eta_{Act}$ = %1.2f', efficiencyAct(i)));

hold off;
xlim([0 length(weights)+1]); ylim([-.3 , 1.3]);
xlabel('N'); ylabel('Weight, ω');

35 end

function [wEst, pc] = estimateWeights(targLvl, weights, nTrials)
% estimate weights using multiple logistic regression

40 % init
nosieLvl = 65; % corresponds to ∼6 dB Std Dev per channel
intNoise = 2; % arbitrary units
targIdx = floor(length(weights)/2)+1;

45 % generate notched noise
x = rand(nTrials,length(weights),2);
x(:,targIdx,:) = 0;
x = bsxfun(@times, x, nosieLvl/sum(x,2));
% add target

50 targInt = (rand(nTrials,1)>.5)+1;
targ = max(0, targLvl(1)+randn(nTrials,1)*targLvl(2));
x(targInt==1,targIdx,1) = targ(targInt==1);
x(targInt==2,targIdx,2) = targ(targInt==2);
% compute level difference

55 Int1 = x(:,:,1);
Int2 = x(:,:,2);
lvlDiff = log10(max(Int2,1)) - log10(max(Int1,1));

% add internal noise
60 noiseSamples = bsxfun(@times, randn(size(lvlDiff)), intNoise);

internalDiff = lvlDiff + noiseSamples;

% calculate resposnes
c = sum(bsxfun(@times, internalDiff, weights), 2);

65 respInt = (c > 0) + 1; % unbiased criterion
anscorrect = targInt==respInt;
pc = mean(anscorrect); % percent correct

% fit weights
70 b = glmfit(lvlDiff,respInt -1,'binomial ','link','logit');

wEst = b(2:end); % remove constant term
wEst = wEst .* 1/sum(abs(wEst)); % normalise to sum to one

end

Listing 1: Code for fitting decision weights to simulated data using Reverse Correlation

