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Full instructions for the task 

Before taking part in the experiment, participants read a set of illustrated onscreen instructions 

describing the task and its mechanics.  Here we provide the full text for these instructions. Each 

bullet point corresponds to a single screen in the instructions.  In the interests of space we have 

not included the illustrations themselves. 

• Welcome! Thank you for volunteering for this experiment. 

• In this experiment we would like you to choose between two one-armed bandits of the 

sort you might find in a casino. 

• The one-armed bandits will be represented like this 

• Every time you choose to play a particular bandit, the lever will be pulled like this ... 

• ... and the payoff will be shown like this.  For example, in this case, the left bandit has 

been played and is paying out 77 points.  

• Each bandit tends to pay out about the same amount of reward on average, but there is 

variability in the reward on any given play.  

• For example, the average reward for the bandit on the right might be 50 points, but on the 

first play we might see a reward of 52 points because of the variability ... 

• ... on the second play we might get 56 points ...  

• ... if we open a third box on the right we might get 45 points this time ...  

• ... and so on, such that if we were to play the right bandit 10 times in a row we might see 

these rewards ... 

• Both bandits will have the same kind of variability and this variability will stay constant 

throughout the experiment. 



 3 

• One of the bandits will always have a higher average reward and hence is the better 

option to choose on average.  

• To make your choice: Press < to play the left bandit. Press > play the right bandit 

• On any trial you can only play one bandit and the number of trials in each game is 

determined by the height of the bandits.  For example, when the bandits are 10 boxes 

high, there are 10 trials in each game ...  

• ... when the bandits are 5 boxes high there are only 5 trials in the game. 

• Finally, the first 4 choices in each game are instructed trials where we will tell you which 

option to play.  This will give you some experience with each option before you make 

your first choice. 

• These instructed trials will be indicated by a green square inside the box we want you to 

open and you must press the button to choose this option in order to move on to see the 

reward and move on the next trial. For example, if you are instructed to choose the left 

box on the first trial, you will see this: 

• If you are instructed to choose the right box on the second trial, you will see this: 

• Once these instructed trials are complete you will have a free choice between the two 

bandits that is indicated by two green squares inside the two boxes you are choosing 

between. 

• Press space when you are ready to begin.  Good luck! 
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Difference in behavior over blocks 

To look for evidence of learning of the strategies over long timescales, we looked at the behavior 

in the different blocks. The results, plotted in figure S1, show no significant differences between 

behavior in any of the blocks. 

An ANOVA of the information bonus with factors for horizon and block shows neither a main 

effect of block (F(3,239) = 0.48, p = 0.69), nor an interaction of block with horizon (F(3,239) = 

0.41, p > 0.75). Likewise an ANOVA for decision noise with factors for horizon, block and 

information condition shows no main effect of block (F(3,479) = 0.88, p = 0.45) nor any 

interaction with the other factors (block x horizon: F(3,479) = 1.66, p = 0.18; block x 

information condition: F(3,479) = 0.39, p = 0.53). 

Thus if subjects do change their exploratory behavior in this task, they do so on a timescale that 

is either much slower or much faster than the 80 games in a single block. 
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Figure S1. Behavior on the first free-choice trial across blocks.  (A, B) Choice curves for the 

unequal (A) and equal (B) information conditions on the first free-choice trial as a function of the 

difference in mean between the two options.  Earlier blocks correspond to darker colors. In all 

cases, there is no effect of block on behavior. (C, D, E) Mean parameter fits for the information 

bonus (C) and decision noise in the [1 3] condition (D) and decision noise in the [2 2] condition 

showing an increase in information bonus and decision noise between horizons 1 and 6 that is 

not modulated by block number. Error bars are s.e.m across participants.  
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Difference in behavior between different center-mean conditions 

In every game in our experiment we set the mean of one of the options, the “center mean”, to be 

either 40 or 60 and then determined the mean of the other option by sampling the difference 

uniformly from [-30, -20, -12, -8, -4, 4, 8, 12, 20, 30]. One possible question is whether the 

choice of center mean matters? To test this we performed the same analysis – fitting choice 

curves for each subject with a simple logistic and then averaging parameters – separately for the 

two center mean conditions.   

Results of this analysis are shown in Figure S2. An ANOVA for the information bonus (with 

factors for horizon and center-mean) reveals a main effect of horizon (F(1,119) = 24.38, p < 10-4) 

as well as center-mean (F(1,119) = 11.14, p < 0.005) but no interaction between them. Post hoc t 

tests showed a significant decrease in information bonus between the center-mean 40 and center-

mean 60 conditions for both horizon 1 (t(29) = 2.52, p < 0.02) and horizon 6 (t(29) = 2.58, p < 

0.02). 

A similar ANOVA for decision noise (with horizon, center-mean and uncertainty condition as 

factors) showed only a main effect of horizon (F(1,119) = 75.78, p < 10-8), with marginal support 

for main effects of center-mean (F(1,119) = 3.56, p = 0.07) and uncertainty condition (F(1,119) = 

3.32, p = 0.08). 
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Figure S2. Behavior on the first free-choice trial across center-mean conditions.  (A, B) Choice 

curves for the unequal (A) and equal (B) information conditions on the first free-choice trial as a 

function of the difference in mean between the two options. (C, D, E) Mean parameter fits for 

the information bonus (C) and decision noise in the [1 3] condition (D) and decision noise in the 

[2 2] condition showing an increase in information bonus and decision noise between horizons 1 

and 6 that is not modulated by center mean. Error bars are s.e.m across participants.  
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Behavior on later trials 

As mentioned in the main text, the reward-information confound makes it difficult to interpret 

the behavior on later trials in terms of directed exploration. Despite this qualification, it is still 

possible to look at later-trial behavior. In Figure S3A-D we plot the choice curves grouped by the 

difference, Δ, in the number of times each option is played.  Here the equal information 

conditions, [2 2] on free-choice trial 1, [3 3] on trial 3 and [4 4] on trial 5, in panel A correspond 

to Δ = 0 because each option has been played an equal number of times. Δ = 1 encompasses the 

[2 3] on trial 2, [3 4] on trial 4 and [4 5] on trial 6 information conditions and so on for Δ = 2 (C) 

and Δ = 3 (D). All of these plots show an increase in the slope as the game progresses consistent 

with a decrease in random exploration. Similarly, for the unequal conditions, there appears to be 

a decrease in the indifference point on later trials consistent with a decrease in directed 

exploration. 

Model fitting confirms these observations with a decrease in information bonus (E) and decision 

noise (F) across the game in all information conditions. In particular we fit the same logistic 

function to all trials using the observed mean as the mean for each option and again set the 

information, Ia equal to ±1/2, to interpret the information bonus as the indifference point of each 

curve. Separate ANOVAs on the information bonus for Δ = 1, 2 and 3 reveals a significant main 

effect of trial number (for Δ = 1: F(2,89) = 7.93, p < 0.001, for Δ = 2: F(2,89) = 22.42, p < 10-7, 

for Δ = 3: F(2,89) = 5.53, p < 0.01). Likewise an ANOVA on the decision noise for Δ = 0, 1, 2 

and 3 yields similar results (for Δ = 0: F(2,89) = 35.38, p < 10-10, for Δ = 1: F(2,89) = 28.52, p < 

10-8, for Δ = 2: F(2,89) = 84.25, p < 10-17, for Δ = 3: F(2,89) = 5.53, p < 0.01) 

Figure S3E clearly shows that the information bonus decreases rapidly and even becomes 

negative (consistent with ambiguity aversion) after the first trial. This highlights the difficulty of 
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detecting directed exploration when fitting behavior to all trials and also suggests that directed 

exploration may decrease over time.  

One difficulty with interpreting these results is that the difference in information between the two 

options is not only a function of Δ, but also depends on the total number of times the options 

have been played. Thus, the option played once in the [1 3] condition is much more informative 

than the option played three times in the [3 5] condition. This makes it difficult to disentangle 

changes due to trial number from changes due to available information without making strong 

assumptions about the functional form of the information. Thus to measure how directed 

exploration changes parametrically as a function of both trial number and information will 

require a different experiment. 

The changes in decision noise are easier to interpret because information does not factor into the 

decision noise.  Also, in the equal condition, the reward-information confound is not a factor 

because there is no information to confound with reward.  Thus the simplest interpretation of the 

change in decision noise is that random exploration is decreasing over the course of the game.  

Intriguingly, the form of this decrease seems to be the same regardless of information condition 

suggesting a general purpose mechanism for random exploration, consistent with it being a 

simpler strategy than directed exploration which changes with information and trial number.  

Overall this analysis supports our conclusion that decision noise is used and adapted as a strategy 

for random exploration. 
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Figure S3: Behavior on later trials. (A-D) Choice curves on later trials grouped by the difference 

in the number of times each option has been played, Δ. (A) The equal conditions, Δ = 0, 

replicates Figure 3A in the main text. (C-D) unequal information conditions Δ = 1 (B), Δ = 2 (C) 

and Δ = 3 (D). (E-F) Fit information bonus (E) and decision noise (F) as a function of free trial 

number for the different Δs. 
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Reaction times 

One potential explanation for the difference in decision noise between horizon 1 and horizon 6 is 

that participants change their speed-accuracy tradeoff between horizons. Specifically, that they 

favor speed over accuracy in horizon 6 – perhaps because they feel they can make up any loss of 

accuracy on later trials or because they simply wish to get the longer games over with.  If this 

were the case, then we might expect to see evidence for this in their reaction times – with the 

first free choice in horizon 6 being faster than in horizon 1. 

Contrary to this prediction we found no effect of horizon on reaction time on the first free choice 

trial (Figure S4A and C).  In particular a repeated measures ANOVA on the z-scored reactions 

times showed no main effect of either horizon (F(1,119) = 0.82, p = 0.37) or information 

condition (F(1,119) = 1.8, p = 0.18).  We did, however, find a small difference in z-scored 

reaction times on the last forced-choice trial.  An ANOVA with factors for horizon and 

information condition showed a main effect of both horizon (F(1,119) = 16.61, p = 10-4) and 

information condition (F(1,119) = 21.96, p =10-5). While this effect is consistent with a speed-

accuracy tradeoff, the overall effect size is small, with the difference in reaction times between 

horizons on the order of 50 ms versus the approximately 750 ms reaction time for the first free-

choice trial. 
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Figure S4. Reaction times. (A) Mean reaction times over the course of the entire game (averaged 

over both information conditions) for horizon 1 and horizon 6 games.  (B, C) Reaction times for 

each information condition on the last forced-choice trial (B) and first free-choice trial (C). 
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Replication 

In order to demonstrate the robustness of our findings, here we report the results of a near-

replication of the study that was run before the task reported in the paper.   

This replication differed in the following ways from the task reported in the main text.  Most 

importantly, we used three horizon conditions instead of two: horizon 1, 6 and 11.  Because the 

horizon 11 games were so long this greatly reduced the total number of games that subjects could 

play to 150 games in five blocks (versus 320 games in four blocks in the main task).  The 

difference in means between the two options was also different and focused more on the 

indifference point around 0.  Specifically, the true differences in means were 0, 5 and 10 points 

(as opposed to 4, 8, 12, 20 and 30 in the main task). 

The participants were also paid in this version of the experiment.  Payment was $12 for the one-

hour session plus up to $3 ‘performance bonus’ that scaled linearly with points earned and was 

rounded up to the nearest dollar.  In practice, because of the relatively small spread in total points 

earned in this experiment, this meant that all participants received the full $3 bonus. 

Finally, the visual layout of the task was different, Figure S5A.  In particular, the one-armed 

bandits were only able to display one reward at a time and the history of rewards was instead 

conveyed with “reward history bars” at the side of the screen.  These history bars behaved in 

much the same way as the bandits in the main task: after a particular option was played, the 

reward on that trial was added to the appropriate history bar, while the corresponding space for 

the unplayed option was filled with an ‘XX’. 

Despite the changes in experiment design basic performance was similar to the main experiment 

(Figure S5B) and the same reward-information confound developed on the later trials (Figure 
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S5C). We also found the same changes with horizon in both information bonus (ANOVA main 

effect of horizon, F(2,227) = 12.54,  p < 0.001) and decision noise (ANOVA main effect of 

horizon, F(2,227) = 14.15, p < 10-5) (Figure S6). 

One new finding was that there was no difference in either the information bonus or decision 

noise on the first free-choice trial in the horizon 6 and horizon 11 conditions (difference in 

information bonus: t(37) = 0.97, p = 0.35, [1 3] decision noise: t(37) = 1.44, p = 0.16, [2 2] 

decision noise t(37) = 0.70, p = 0.49). Whether this result is due to our inability to resolve small 

differences in exploration between the longer horizons, or because exploration is categorically 

modulated by horizon (with low exploration at horizon 1 and high exploration at any other 

horizon) is difficult to tell.   

Our analysis of behavior on the later trials of horizon 6 games (Figure 3 and Figure S3) sheds 

light on this for random exploration. Specifically, the result that decision noise decreases over 

the course of these games suggests that random exploration, at least, is parametrically modulated 

by horizon.  It is not possible, however, to draw the same conclusion about directed exploration.  

Although we do see a similar decrease in information bonus over the course of the games (Figure 

S3E), interpretation of this is made more difficult because of the reward-information confound. 

Therefore we conclude that, while random exploration is modulated parametrically by horizon, 

directed exploration may be modulated categorically. 
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Figure S5. Repeat experiment. (A) Example of a free-choice trial showing the different visual 

layout in this version of the task. (B) Basic performance showing an increase in fraction correct 

as a function of free-choice trial number. (C) Correlation between the difference in means 

between the options and difference in the number of times each option has been played over the 

horizon 6 and 11 games. 
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Figure S6. Behavior on the first free-choice trial in the replication experiment.  (A, B) Choice 

curves for the unequal (A) and equal (B) information conditions. (C, D, E) Mean parameter fits 

for the information bonus (C) and decision noise in the [1 3] condition (D) and decision noise in 

the [2 2] condition (E). (F-N) Scatter plots comparing parameter fits for individual subjects in 
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horizons 1 and horizon 6 (F-H), 1 and 11 (I-K) and 6 and 11 (L-N). The dashed lines denote 

equality.  

 

 

Model-based analysis of behavior 

To test whether our conclusions in the main paper are contingent on our modeling choices, we 

performed a more detailed model-based analysis. In particular, we considered models with a 

number of cognitive factors that are known to influence choice and asked whether including 

these changed our results.  

The factors we considered were:  

• Unequal weighting of the rewards 

• Choice kernel 

• Variance bias 

• Trend bias 

• Non-linear utility function 

We incorporated these factors by changing the equation for the value of each option, Qa, in the 

original model.  As before we fit the models separately for each subject and for each information 

and horizon condition. Importantly, each of the models was parameterized in such a way that 

allowed us to extract an information bonus and decision noise from each of the fits.  This 

allowed us to compare the information bonus and decision noise between models to assess 

whether adding a particular factor removed the effect of horizon. 
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Models 

Unequal weighting of the rewards 

Our original model makes decisions based on the means of the observed samples for each option, 

thus it implicitly assumes that each of the past outcomes has equal influence on the decision. 

However, it is well known that humans do not always treat all of the past equally and there is 

good evidence that recent and maximal outcomes are overweighted in decision making 

(Kahneman et al., 1993; Redelmeier & Kahneman, 1996; Do et al., 2008; Ludvig et al., 2014; 

Blanchard et al., 2014).  

To take into account these possibilities we built three models.  The first, termed the “reward 

order” model, allows arbitrary weighting of rewards based on their order, thus encompassing 

primacy and recency effects as special cases.  The second and third models give special weight 

to maximal outcomes in slightly different ways. The “peak bias” model, finds one maximum 

reward, the global maximum over the four forced play trials, while the “local peak bias” model 

finds two maximum rewards, one for each option. 

More concretely, the equations for the models are as follows: 

Reward order 

This model assumes that participants compute the value for each option as: 

Qa =
ω iri

i=1

4

∑ xia

xia
i=1

4

∑
+α Ia + Bsa  

where ri  is the reward outcome on forced play i, ω i is the weight given to that outcome and xia

indicates whether option a has been played ( xia = 1) on trial i or not ( xia = 0 ).  As before, Ia is 
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the information, α is the information bonus, sa is the side, and B is the spatial bias. To allow for 

comparison with our original model we set the weight of the first outcome to 1 (ω i = 1 ).   

Peak bias 

This model computes values as 

Qa = Ra +ωmaxrmaxma +α Ia + Bsa  

where Ra  is the mean of option, a, ωmax  is the weight given to the maximum reward, rmax , and 

ma is and indicator variable that is 1 if option a is the option with the maximum value and 0 

otherwise. 

Local peak bias 

This model computes values as 

Qa = Ra +ωmaxrmax
a +α Ia + Bsa  

where rmax
a  is the maximum reward seen on option a.  

Choice kernel 

An important suboptimality in human decision making is the tendency for past choices 

themselves, regardless of outcome, to influence future behavior (Lau & Glimcher 2005; Ito & 

Doya 2009; Akaishi et al. 2014). The best known of these biases is perseveration in which past 

choices tend to be repeated, but other possibilities such as alternation are known to occur, 

especially in animals. To model this effect we included a term for the influence of the past 

choices as follows 

Qa = Ra + κ i
i=1

4

∑ ci +α Ia + Bsa  
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where ci is the choice on trial i  ( ci = +1  for right and ci = −1  for left) and κ i is the choice kernel 

that determines the weight given to past choices. As with the reward order model, to allow 

comparison with the original model, we set the weight on the first choice as zero κ1 = 0 . 

Variance bias 

To test whether the variance of the outcomes on the forced plays affected choice, we included a 

term for the empirical standard deviation, σ̂ a ,  

Qa = Ra +Vaσ̂ a +α Ia + Bsa  

Trend bias 

Trend bias describes the tendency for people to bias their choices towards options whose 

outcomes appear to be increasing over time (Loewenstein & Prelec, 1993). To test for this in our 

participants we included a term related to the linear trend, τ a , of rewards for each option. 

Qa = Ra + Daτ a +α Ia + Bsa  

Non-linear utility function 

Finally, we include the possibility that the utility of a reward is a non-linear function of its value.  

In particular we assume the following form for the utility 

u(r) = rη  

and base decisions on the mean utility, Ua , by computing the value as 

Qa =Ua +α Ia + Bsa  



 21 

Results 

The design of our models allows us to extract an information bonus and decision noise from each 

of them that can be compared across models.  Using this we can then test whether our main 

finding, that information bonus and decision noise increase between horizons 1 and 6, still holds 

when we include the additional factors in the model. 

These results are shown in Figure S7.  We plot stacked histograms of the change in information 

bonus and decision noise across horizon conditions. These histograms are all significantly shifted 

to the right of zero indicating that the increase in information bonus and decision noise is present 

in all of the models.  

Furthermore, model comparison using the Bayes Information Criterion (BIC), showed that all 

participants were best fit using the original model.   

Taken together, these results suggest that our original conclusions are valid and that neither the 

change in information bonus nor decision noise is due to any of these cognitive factors. 
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Figure S7. Histograms  of the difference in information bonus (A), [1 3] decision noise (B) and 

[2 2] decision noise (C) for each participant as computed by the different models. 
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Model of optimal behavior 

The optimal model solves a dynamic programming problem (Bellman, 1957; Duff, 2002) to 

compute the action that will maximize the expected total reward over the course of each game. 

To do this the model first infers a distribution over the mean of each option given the observed 

rewards.  We write rt  to denote the reward on trial t in the game, ct to be the choice on trial t and 

Dt  to be the set of choices and rewards up to and including time t. We assume that the model 

knows that the rewards are generated from a truncated Gaussian distribution and we further 

assume that it knows that the standard deviation of this distribution, σ n .   

In this case, the inferred distribution over the mean of option a, µa , given the history of choices 

and rewards is 

 p(µa |Dt )∝
nt
a

2π
1
σ n

exp − nt
a (µa − Rt

a / nt
a )2

2σ n
2

⎛
⎝⎜

⎞
⎠⎟
p(µa )   (1) 

where nt
a  is the number of times option a has been played, Rt

a  is the cumulative sum of the 

rewards obtained from playing option a and p(µa )  is the prior of the mean.  In our model we 

assumed an improper, uniform prior on µa  (although we should note that it is straightforward to 

include a Gaussian prior instead).  With this prior, equation (1) shows that the model's state of 

knowledge about option a is summarized by the two numbers, nt
a  and Rt

a .  We can thus define 

the hyperstate (Duff, 2002), St, the state of information that the model has about both options as 

 St = (nt
A ,Rt

A ,nt
B ,Rt

B )  . (2) 

With the hyperstates defined in this way we can now specify a Markov decision process within 

this state space.  In particular we can define a transition matrix, T (St+1 | St ,a) , which describes 
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the probability of transitioning between states St+1  and St given action a.  To compute this we 

note that if action a = A is chosen on trial t and reward rt  is observed, then new state on the next 

trial will be 

 St+1 = (nt
A +1,Rt

A + rt ,nt
B ,Rt

B )   (3) 

Further, given the distribution over the mean, using equation (1) we can predict that this outcome 

will occur with probability 

 

p(rt | St ,A) = d∫ µA p(rt | µ
A )p(µA | St )

= nt
A

2π (1+ nt
A )
1
σ n

exp − (rt − Rt
A / nt

A )2

2σ n
2

⎛
⎝⎜

⎞
⎠⎟

  (4) 

Note that this result comes because both p(rt | µ
a )  and p(µa |Dt )  are Gaussians, with p(µa |Dt )  

defined in equation (1) and  

 p(rt | µ
a ) = 1

2πσ n

exp − (rt − µa )2

2σ n
2

⎛
⎝⎜

⎞
⎠⎟

  (5) 

In practice, to make the algorithm tractable we only consider a subset of possible outcomes, 

focusing on a set of 51 possible outcomes between 0 and 100 for the horizon 6 case and 21 

possible outcomes in the horizon 11 case.  Given this approximation we can then compute the set 

of possible states encountered during the task and solve the dynamic program by iterating the 

equations for the state values 

 V (St ) = maxa Q(a,St )   (6) 

and the action values 

 Q(a,St ) = T
′St+1
∑ (St+1 | St ,a)(rt (St+1)+V (St+1))   (7) 
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In particular we start at the last trial, t = H, and work backwards in time to the first trial.  Here, 

by definition the action value is just the expected value of the reward from each option; i.e., 

 Q(aH ,SH ) =
RH
aH

nH
aH

  (8) 

Finally the optimal action is to choose the option for which has the highest value on the first free 

trial, i.e. 

 c1 = argmax
a

 Q(a,S1)   (9) 

This analysis allows us to compute the optimal behavior on the task. To compute the optimal 

ambiguity bonus in Figures 2D, we simulated choices from this optimal model on the same set of 

problems faced by the participants.  We then fit this simulated data using the same logistic 

regression model used to fit participants behavior.  Finally, we note that, because this algorithm 

is deterministic, the optimal decision noise is zero for all horizon conditions. 
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