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Details of the BUGS Sampling 

The computational efficiency of the BUGS (Bayesian Analysis Using Gibbs Sampling) code used for the

simulation, and in most cases also for the analysis of the empirical data, was increased through the use of

pseudo priors and by setting a prior on the model indicator variable such that both models were evaluated

about equally often (for details of this procedure see Carlin & Chib, 1995; Kruschke, 2011; Lodewyckx, Lee, &

Wagenmakers, 2011; Ntzoufras, 2009). For each (simulated) set of data, this required several calls to BUGS. We

first estimated the posterior parameter distributions of each choice model separately to obtain the pseudo

priors. Next, both models were estimated simultaneously to obtain a prior estimate on the model indicator

variable. In a final third step, the Bayes factor was estimated from the model indicator.

During each of these steps, four independent Monte Carlo Markov chain processes were run. We

obtained a total of 100,000 representative samples from the (joint) posterior distributions for most analyses

except for the analyses of the exemplar model, where only 50,000 samples were drawn to reduce the sampling

time. Chains were stored after an initial "burn in" of 6,000 steps to ensure that the obtained estimates were

unaffected by the random starting values of each chain. To reduce memory load, only every 10th sample was

stored for most analyses, so the actual chain length before this thinning procedure was 1,000,000. For the

exemplar model a thinning of 5 was used, and for the group level simulation, a thinning of 100 was used.

For all estimated parameters, convergence to stationary sample distributions was confirmed based on

visual inspections of the trace plots, the autocorrelation within the chains, and the Gelman–Rubin statistic

(Gelman & Rubin, 1992), which indicated that the whole range of the posterior parameter distributions was

explored and that the sampling procedure in BUGS was efficient. To further ensure that the model estimation in

BUGS worked well, we checked if the posterior estimates of the parameters accurately recovered the true

parameter values used when simulating the data. As can be seen from the respective parameter recovery plots

below, this was the case for the individual as well as the group level data.
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Implementation of a Single Strategy A and a Toolbox TBA,B in BUGS

The following code shows the schematic implementation of a single strategy and a toolbox consisting of two
strategies in BUGS.

 
model { 
 
   #prior on epsilon (application error) 
   #epsilon ranges from 0 (deterministic choice) to .5 (random choice)  
    
   epsilon2.tb~dbeta(1,1)    #prior on epsilon (application error) 
   epsilon.tb<-epsilon2.tb/2 
 
 
   #prior on beta (probability of A over B) 
   beta.tb~dbeta(1,1) 
   
   for (cc in 1:nOptions) { 
      p.B[cc] <- predB[cc] * (1-epsilon.tb) + (1-predB[cc]) * epsilon.tb 
      p.A[cc] <- predA[cc] * (1-epsilon.tb) + (1-predA[cc]) * epsilon.tb 
      p.TB[cc]<- pA.A[cc] * beta.tb + pA.B[cc] * (1-beta.tb) 
 
      choices[cc] ~ dbern(pA.TB[cc]) 
   } 
} 
 
#Note: Model reduces to "only" strategy A if beta.tb is set to 1.  
#For beta.tb=0, the model reduces to "only" strategy B 

Data supplied from outside BUGS:

 nOptions = number of pairwise choices (choice of option X coded as 1, choice of option Y coded as 0)

 predB = deterministic predictions of strategy B [1 × nOptions]

 predA = deterministic predictions ofstrategy A [1 × nOptions]

 choices = actual choices of one individual [1 × nOptions]

Note that for most applications, the Bernoulli distribution in the BUGS code was replaced with a binomial
distribution to increase sampling efficiency. See following code for details.
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BUGS Code for Comparison Between A /B and TBA,B for a Single Individual

The following code provides the implementation of the comparison between a single model against a toolbox in
BUGS.

model { 
 
   modelIdx ~ dcat(p[]) 
   p[1] <- .5   #1 = prediction TB 
   p[2] <- .5   #2 = prediction A 
    
   epsilon2.tb ~ dbeta(1,1) #prior on epsilon (application error)  
   epsilon.tb <- epsilon2.tb/2 
 
   beta.tb    ~ dbeta(1,1)  #prior on beta (probability of A over B) 
   epsilon2.A ~ dbeta(1,1) #prior on epsilon for strategy A 
   epsilon.A <- epsilon2.A/2 
 
   #probabilities for the four possible cases of pA.TB 
   pX[1,1] <- (1-epsilon.tb)*beta.tb+(1-epsilon.tb)*(1-beta.tb) #A & B     
   pX[1,2] <- (1-epsilon.tb)*beta.tb+epsilon.tb    *(1-beta.tb) #A only  
   pX[1,3] <- epsilon.tb    *beta.tb+(1-epsilon.tb)*(1-beta.tb) #B only 
   pX[1,4] <- epsilon.tb    *beta.tb+epsilon.tb    *(1-beta.tb) #not A nor B  
    
   #probabilities for the four possible cases of pA.TTB 
   pX[2,1] <- (1-epsilon.A) #A & B  
   pX[2,2] <- (1-epsilon.A) #A only  
   pX[2,3] <- epsilon.A     #B only  
   pX[2,4] <- epsilon.A     #neither A nor B 
    
   for (cc in 1:4) { 
    choices[cc] ~ dbin(pX[modelIdx,cc],trials[cc]) 
   }  
} 

Data supplied from outside BUGS:

 choices[1] = number of X choices that match the deterministic predictions of A and B
 choices[2] = number of X choices that match the deterministic predictions of A only
 choices[3] = number of X choices that match the deterministic predictions of B only
 choices[4] = number of X choices that match the deterministic predictions of neither B nor A
 trials[1:4] = total number of choices for each of the four possible cases
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Recovery of Parameter Values Used in the Simulation (Individual Level Data)

Figure A below plots the parameters used in the choice simulation (x axes) against the parameter estimates
obtained from the BUGS model (y axes). Error bars indicate the region of highest posterior density (HPD95) of
the posterior estimates. The figure shows that the true parameter values are accurately recovered. If is close
to 1 (indicating random choice), the error margins around the estimated parameters become very wide. This
seems plausible as random choices can be described with strategy A and B alike.

Figure A
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Parameter Estimates for the Data in Rieskamp and Otto (2006)

Beta Parameter
Figure B shows the estimate of , the probability of the take the best strategy (TTB ) in the toolbox, for each
individual decision maker in Rieskamp and Otto (2006), ordered by the Bayes factor. The filled triangles indicate
cases for which the probability of the toolbox was higher than the probability of the reinforced model (weighted
additive [WADD] in the compensatory condition and TTB in the noncompensatory condition). Error bars indicate
the region of highest posterior density (HPD95) of the posterior estimates.

These parameter estimates seem plausible in the light of the model comparison. For example, in the left figure,
individuals with low estimates (indicating predominantly WADD choices) were better described by a WADD
only model as compared to a toolbox.

Figure B.
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Error Parameter
Figure C shows the estimated application error for each individual decision maker in Rieskamp and Otto
(2006), ordered by the Bayes factor. Triangles indicate the toolbox error, circles the error for the reinforced
model (weighted additive [WADD] in the compensatory condition and take the best [TTB] in the
noncompensatory condition). Error bars indicate the region of highest posterior density (HPD95) of the posterior
estimates. The figure shows that, for example, individuals who are best described by a toolbox in the
noncompensatory condition are characterized by high application errors for the TTB model. This seems plausible
as TTB could not describe their choices very well. The figure also indicates that a few individuals might not be
well described by a toolbox either. For example, participant 15 in the noncompensatory condition still has a
rather high implementation error.

Figure C.
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Lewandowsky, Kalish, and Ngang (2002) – "Quadratic" Experts

Figure D shows the same analysis as in Figure 6 in the manuscript except that here, the two partitioning
functions are implemented as quadratic rather than linear regressions. Here, the evidence in favor of knowledge
partitioning (gray bars) in the systematic context condition.is stronger as compared to the case of liner experts
This suggests that participants did partition their knowledge but that they might have used two separate
quadratic rules rather than linear rules.

Figure D.
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BUGS Code for the Exemplar Model

The following code describes the implementation of the exemplar model on the individual level in BUGS for the
analysis of Rieskamp and Otto (2006).

 

model { 
      
     #prior on alpha parameter 
     alpha ~ dbeta(1,1) # denoted "s" parameter in the text 
       
     for (cc in 1:nOptions) {  
      
        #loop to compare option on hand with previous options 
        for(dd in 1:143) { pow.alpha[cc,dd] <- pow(alpha,sim.matrix[cc,dd]) }  
          
       denominator[cc] <- inprod(pow.alpha[cc,],valid.matrix[cc,])  
       nominator[cc]   <- inprod(pow.alpha[cc,],kBase.matrix[cc,]) 
              
       pExemplar[cc] <- nominator[cc]/denominator[cc] 
 
       choices[cc] ~ dbern(pExemplar[cc])  
     } 
} 
 
 
Data supplied from outside BUGS:

 nOptions = number of pairwise choices

 choices = actual choices of one individual [1 × nOptions]

 sim.matrix = matrix [nOptions × 143] = similarity of the last 48 with the previous 143 options.
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Individual Parameter Estimates for the Exemplar Model

Figure E shows the estimated attention weight parameter s in the exemplar model for each individual decision
maker in Rieskamp and Otto (2006), ordered by the Bayes factor. The triangles indicate cases for which the
probability of the toolbox (TB) was higher than the probability of the exemplar model. Error bars indicate the
region of highest posterior density (HPD95) of the posterior estimates.

Figure E.
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BUGSModel for the Group Level Toolbox

Graphical Model

 
Figure F. Extension of the graphical model for single decision makers (Figure 1) to the group level. All 

individual toolbox (TB) and single model (A) parameters stem from normally distributed group-level 

parameters (indicated by capital Greek letters  and ) that are defined by its respective means ( ) and 

variances ( ). Group-level parameters mapped to individual-level rate scale (ranging from 0 to 1) 

through an inverse probit transformation (indicated by dashed arrows). 
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BUGS model
The following code provides the BUGS code for the group level comparison between a single strategy and a
toolbox consisting of two strategies. Here, the individual parameters stem from a group level distribution.

model { 
     
   #Model Index 
   modelIdx ~ dcat(p[]) 
   p[1] <- pTB   # probability of Toolbox (idx = 1) 
   p[2] <- 1-pTB 
    
     
      #Group-level for epsilon  
       prior.e.mean     <- 0          #prior on group-mean  
       prior.e.mean.tau <- pow(1,-2)  #prior on precision of group mean 
       group.e.mean      ~ dnorm(prior.e.mean,prior.e.mean.tau  
 
       group.e.sd01 ~ dbeta(1,1)       #prior on sd for epsilon  
       group.e.sd  <- group.e.sd01 * 3.999 + .001 
       group.e.tau <- pow(group.e.sd,-2) 
 
      #Group-level for beta (on probit scale) 
       prior.mean.beta <- 0        #prior on mean of beta  
       prior.tau.beta  <- pow(1,-2)    
       group.beta.mean ~ dnorm(prior.mean.beta, prior.tau.beta)  
        
       group.beta.sd01 ~ dbeta(1,1) #sd = 1 -> flat prior on the 0-1 scale 
       group.beta.sd  <- group.beta.sd01 * 3.999 + .001 
       group.beta.tau <- pow(group.beta.sd,-2) 
           
      #Group-level for epsilon (TTB) 
       prior.e.ttb.mean     <- 0  #prior on group-mean  
       prior.e.ttb.mean.tau <- pow(1,-2)  #prior on precision of group mean 
       group.e.ttb.mean      ~ dnorm(prior.e.ttb.mean,prior.e.ttb.mean.tau)  
         
       group.e.ttb.sd01 ~ dbeta(1,1)  #prior on sd for epsilon 
       group.e.ttb.sd  <- group.e.ttb.sd01 * 3.999 + .001 
       group.e.ttb.tau <- pow(group.e.ttb.sd,-2) 
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for (vpn in 1:nParticipants) { 
      
   #individual for epsilon TB  
    epsilon2.norm[vpn] ~ dnorm(group.e.mean ,group.e.tau) I(-4,4)  
    epsilon2.tb[vpn]  <- phi(epsilon.norm[vpn])  
    epsilon.tb[vpn]   <- epsilon2.tb[vpn]/2 
 
   #individual for beta     
    beta.norm[vpn] ~ dnorm(group.beta.mean,group.beta.tau)  I(-4,4)   
    beta.tb[vpn]  <- phi(beta.norm[vpn]) 
    
   #individual for epsilon TTB 
    epsilon.ttb.norm[vpn] ~ dnorm(group.e.ttb.mean ,group.e.ttb.tau) I(-4,4)  
    epsilon2.ttb[vpn]    <- phi(epsilon.ttb.norm[vpn])  
    epsilon.ttb[vpn]     <- epsilon2.ttb[vpn]/2 
     
     
   #probabilities for the four possible cases of pA.TB 
 
   pA[1,vpn,1]<- (1-epsilon.tb[vpn])*beta.tb[vpn] 
                +(1-epsilon.tb[vpn])*(1-beta.tb[vpn]) #TTB & WADD prediction 
 
   pA[1,vpn,2]<- (1-epsilon.tb[vpn])*beta.tb[vpn] 
                +epsilon.tb[vpn]*(1-beta.tb[vpn])     #TTB only prediction 
 
   pA[1,vpn,3]<- epsilon.tb[vpn]*beta.tb[vpn] 
                +(1-epsilon.tb[vpn])*(1-beta.tb[vpn]) #WADD only prediction 
 
   pA[1,vpn,4]<- epsilon.tb[vpn]*beta.tb[vpn] 
                +epsilon.tb[vpn]*(1-beta.tb[vpn])     #neither TTB nor WADD  
    
   #probabilities for the four possible cases of pA.TTB 
    pA[2,vpn,1] <- (1-epsilon.ttb[vpn]) #TTB & WADD prediction 
    pA[2,vpn,2] <- (1-epsilon.ttb[vpn]) #TTB only prediction 
    pA[2,vpn,3] <- epsilon.ttb[vpn]     #WADD only prediction 
    pA[2,vpn,4] <- epsilon.ttb[vpn]     #neither TTB nor WADD prediction 
   
    
   #1 -- TB   2 -- TTB      
     for (cc in 1:4) { 
      choicesA[vpn,cc] ~ dbin(pA[modelIdx,vpn,cc],trials[cc]) 
     }  
  } 
} 
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Parameter Recovery of the Group Level Simulation

Group level distributions
Figure G shows the results of the parameter recovery for the group level simulation (part III of the manuscript),
for the group level parameters TB and TB (x axes), separately for A = 1 and A = .9. Error bars indicate the
region of highest posterior density (HPD95) of the posterior estimates (y axis). The figure indicates that the
group level estimates are very close to the actual parameters used in the simulation. If is close to 1 (indicating
random choice), the error margins around the estimated parameters become very wide. This is plausible as
the individual parameters are not identified for random choices.

Figure G.
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Individual level distribution of the error parameter
Figures H and I show the individual parameter recovery for the toolbox error parameter TB in the group level
simulation for each of the 20 synthetic individuals. The recovery is split up for different simulation values for the
mean group level application errors across the panels. Figure H shows the cases where each of the 20
individuals in the group used A (i.e., A = 1). Figure I shows the cases where only 18 of the 20 individuals in the
group used A (i.e., A = .9). As can be seen from the figures, the error parameters are accurately recovered on
the individual level.

Figure H.
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Figure I.
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Individual level distribution of the beta parameter
Figure J and K show the parameter recovery for individual parameters for different values of mean group level
application errors (across panels). For Figure J, all of the 20 individuals in the simulation used A (i.e., A = 1,
indicated by the horizontal line). For Figure K, 18 out of the 20 used A and 2 used B (i.e., A = .9). In both cases,
the individual parameters get accurately recovered. Note that if A = .9, the individual estimates accurately
distinguished B and A users as long as the application error was not too high, which is not obvious from the
estimates on the group level outlined above .If the application error is close to 1 (indicating random choice), the
error margins around the estimated parameters become very wide, which seems plausible, and the individual
estimates "shrink" towards the group mean because the genuine number of B choices now became very small.

Figure J.
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Figure K.
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Comparing the Bayesian Information Criterion (BIC) and the Bayes Factor (BF)

Toolbox With Two Independent Errors
The following BUGS code introduces a toolbox with an independent error for each tool. This case extends the
toolbox model used in the previous analyses where a common error was assumed for all tools. Together with
the code outlined next, this model provided the basis of comparing BIC and BF.

model { 
 
# e.TB.R1 and e.TB.R2 are independent  
 
    #Model indicator  
     modelProb[1]<-pR1    #index 1 = probability for simple model (only R1) 
     modelProb[2]<-1-pR1  #index 2 = probability for toolbox (R1 and R2) 
     idx ~ dcat(modelProb[]) 
      
       #Prior on R1 error  
        e.R1 ~ dunif(0,.5) 
         
       #Prior on error in the toolbox 
        e.TB.R1 ~ dunif(0,.5)     #error of R1 
        e.TB.R2 ~ dunif(0,.5)     #error of R2 independent of R1 
         
       #probability of using R1 in the toolbox 
        beta ~  dbeta(1,1)           
         
     for (cc in 1:nItems) { 
 
     #Toolbox model 
      pA.R1.TB[cc]<-predR1[cc]*(1-e.TB.R1)+(1-predR1[cc])*e.TB.R1 
      pA.R2.TB[cc]<-predR2[cc]*(1-e.TB.R2)+(1-predR2[cc])*e.TB.R2 
      pA.TB[cc]<-pA.R1.TB[cc]*beta + pA.R2.TB[cc]*(1-beta) 
 
     #R1 model 
      pA.R1[cc]<-predR1[cc]*(1-e.R1)+(1-predR1[cc])*e.R1     
        
      pA[1,cc] <- pA.R1[cc] #index 1 = probability for only R1 
      pA[2,cc] <- pA.TB[cc] #index 2 = probability for TB 
      answers[cc] ~ dbern(pA[idx,cc]) 
     } 
} 
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BUGS Model of Toolbox With Dependent Errors
The following BUGS code introduces a toolbox where the error of one tool (R1) must always be higher than the
error of the other tool (R2), thus introducing a change in the functional form as compared to the case of
independent errors outline above.

model { 
 
# e.TB.R2 >= e.TB.R1  
 
    #Model indicator  
     modelProb[1]<-pR1    #index 1 = probability for simple model (only R1) 
     modelProb[2]<-1-pR1  #index 2 = probability for toolbox (R1 and R2) 
     idx ~ dcat(modelProb[]) 
      
       #Prior on R1 error  
        e.R1 ~ dunif(0,.5) 
         
       #Prior on error in the toolbox 
        e.TB.R1 ~ dunif(0,.5)   #error of R1 
        min.e.TB.R2 <- e.TB.R1   
        e.TB.R2 ~ dunif(min.e.TB.R2,.5) #e.TB.R2 >= e.TB.R1 
         
       #probability of using R1 in the toolbox 
        beta ~  dbeta(1,1)           
         
     for (cc in 1:nItems) { 
 
     #Toolbox model 
      pA.R1.TB[cc]<-predR1[cc]*(1-e.TB.R1)+(1-predR1[cc])*e.TB.R1 
      pA.R2.TB[cc]<-predR2[cc]*(1-e.TB.R2)+(1-predR2[cc])*e.TB.R2 
      pA.TB[cc]<-pA.R1.TB[cc]*beta + pA.R2.TB[cc]*(1-beta) 
 
     #R1 model 
      pA.R1[cc]<-predR1[cc]*(1-e.R1)+(1-predR1[cc])*e.R1  
        
      pA[1,cc] <- pA.R1[cc] #index 1 = probability for only R1 
      pA[2,cc] <- pA.TB[cc] #index 2 = probability for TB 
      answers[cc] ~ dbern(pA[idx,cc]) 
      } 
} 
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Difference Between BIC and BF in the Model Comparison

Table A1 and Figure L provide an overview of the Bayes Factors obtained using BUGS, and its approximation
using BIC for changes in functional form. Although the BIC is affected by the number of observations, in contrast
to BUGS it is not sensitive to changes in functional form (i.e. the difference between the independent and the
dependent model implementation).

BF log(BF)
Data Dependent Independent Dependent Independent

N pTTB e BIC BF dep BIC BF indep BIC BF dep BIC BF indep
20 0.8 0 0.22 1.22 0.22 0.61 1.5 0.2 1.5 0.5
40 0.8 0 0.50 2.23 0.50 1.00 0.7 0.8 0.7 0
60 0.8 0 1.49 4.95 1.49 2.23 0.4 1.6 0.4 0.8
80 0.8 0 4.95 13.46 4.95 6.05 1.6 2.6 1.6 1.8

Table A1

Figure L.
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Comparison Between BIC and BF for Different Priors on

Table A2 and Figure M provide an overview of the Bayes Factors obtained using BUGS, and its approximation
using BIC for changes in functional form due to different priors. Although the BIC is affected by the number of
observations, in contrast to BUGS it is not sensitive to changes in the prior distributions (i.e. the difference
between a uniform or a slightly skewed prior distribution).

BF log(BF)
Data

BF_BIC
BF_BUGS

BF_BIC
BF_BUGS

N pTTB e (1,1) (1,4) (1,5) (1,1) (1,4) (1,5)
80 0.8 0 45 19.8 0.9 0.27 3.8 3 0.1 1.3
60 0.8 0 11.5 5.7 0.3 0.09 2.4 1.7 1.3 2.4
40 0.8 0 3.2 2 0.1 0.04 1.2 0.7 2.2 3.1

Table A2

Figure M.
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