Online supplemental appendix for *The versatility of SpAM: A fast, efficient spatial method of data collection for multidimensional scaling,* by Michael C. Hout, Stephen D. Goldinger, and Ryan W. Ferguson.

Table of Contents

Section

Page Number

1.	Description of stimuli used in Experiments 2 and 3. 1.1 Stimuli used in Experiment 2. 1.2 Stimuli used in Experiment 3.	2 3 4
2.	 Description of supplemental multidimensional scaling solutions. 2.1 3D solutions derived from the pairwise method (Exp 1). 2.2 3D solutions derived from the spatial arrangement method (Exp 1). 2.3 3D solutions derived from the total-set pairwise method (Exp 1). 2.4 3D solutions derived from the triad method (Exp 1). 2.5 2D solutions derived from pairwise and SpAM methods (Exp 3). 	5 6 7 8 9 10
3.	 Description of Monte Carlo simulations. 3.1 Correlation coefficient frequency tables from Exp 1. 3.2 Within-method correlation coefficient histograms from Exp 1. 3.3 Cross-method correlation coefficient histograms from Exp 1. 3.4 Correlation coefficient frequency tables from Exp 2. 3.5 Within-method correlation coefficient histograms from Exp 2. 3.6 Cross-method correlation coefficient histograms from Exp 2. 3.7 Binned deviation frequency tables from Exp 1. 3.8 Binned deviation histograms from Exp 1. 3.9 Binned distance frequency tables from Exp 2. 3.10 Binned distance histograms from Exp 2. 	11 12 13 14 15 16 17 18 19 20 21
4.	Description of individual differences (ID) analyses. 4.1 Correlations from ID analyses in Exps 1 and 2.	22 23

Section 1. Stimuli used in Experiments 2 and 3.

In Experiment 2, we used two sets of animal names (see Table A1). The first set, dubbed the "categorical" animals, were obtained from Hornberger et al. (2009), and were selected such that each animal could be easily categorized along two dimensions. Each was either a bird or four-legged animal (*avian* dimension), and was either a land or water dweller (*habitat* dimension). The second set of names, referred to as the "continuous" animals, were obtained from Henley (1969), and were selected with no obvious categorical classification nor pre-specified underlying structure.

In Experiment 3, we used two sets of stimuli. The first were a subset of the two-dimensional bugs, used in Experiment 1. The second set of stimuli (see Figure A1) were faces created using FaceGen Modeller (Singular Inversions, 2004) software. They were created by first generating a racially ambiguous, male face, for use as a prototype. We then systematically distorted the prototype along two dimensions: the skin shade, and separation of the eyes (varied in equal steps).

Categorical	Continuous
Woodpecker	Dog
Pheasant	Cat
Turkey	Mouse
Ostrich	Cow
Pigeon	Horse
Chicken	Lion
Penguin	Bear
Duck	Deer
Swan	Sheep
Goose	Pig
Seagull	Gorilla
Pelican	Badger
Badger	Camel
Squirrel	Elephant
Hedgehog	Kangaroo
Elephant	Koala
Bear	Raccoon
Buffalo	Donkey
Wolf	Squirrel
Turtle	Zebra
Frog	Giraffe
Crocodile	Rhinoceros
Crab	Rabbit
Beaver	Tortoise
Dolphin	Buffalo

Table A1. All stimuli used in Experiment 2. The left column shows the categorical animals, and the right shows the continuous items.

Figure A1. Face stimuli used in Experiment 3. The prototype was not used shown to participants, but was simply used to generate a range of distortions varying in skin shade and separation of the eyes.

Section 2. Supplemental multidimensional scaling solutions.

In Experiment 1, we tested the ability of four different techniques (pairwise, SpAM, total-set, and triad) to uncover the three-dimensions of our wheel and bug stimuli. Data obtained from each method was used to create three-dimensional multidimensional scaling (MDS) plots, shown in Figures A2-A5. The solutions are shown in side-by-side two-dimensional plots; the first showing dimension 1 against dimension 2, and the second showing dimension 1 against dimension 3.

In Experiment 3, we used the pairwise and SpAM techniques to obtain similarity estimates for a subset of the two-dimensional bugs, and new, computer-generated two-dimensional faces. Figure A6 shows the two-dimensional MDS solutions for each technique.

Figure A2. Three-dimensional MDS spaces generated by the pairwise method in Experiment 1.

Figure A3. Three-dimensional MDS spaces generated by the spatial arrangement method in Experiment 1.

Figure A4. Three-dimensional MDS spaces generated by the total-set pairwise method in Experiment 1.

Figure A5. Three-dimensional MDS spaces generated by the triad method in Experiment 1.

Figure A6. MDS spaces for two-dimensional bugs and faces, derived by SpAM (top panels) and pairwise (bottom panels)

Section 3. Monte Carlo simulations.

In Experiments 1 and 2, we performed a series of simulations. Because each MDS solution is unique, the orderly solutions we obtained may simply have been fortuitous. In order to address this possibility, we performed Monte Carlo simulations on unmodified data from pairwise and SpAM techniques, and on modified SpAM data. In the latter case, we attempted to isolate characteristics of SpAM that elicit its high-quality solutions, by systematically stripping the SpAM data of its granularity and data mass. In the "reduced granularity" data, we converted the raw pixel values to rounded, single-digit integers (akin to scores obtained via Likert scales). For the "reduced subjects" data, we randomly sampled a subset of participants' data matrices to match the sample sizes obtained by pairwise methods. Finally, in "both reduced" data, both modifications were applied.

We applied scaling algorithms to the data 25 times each, and first examined the consistency of the solutions across iterations of the scaling algorithm. To do this, we calculated the inter-item distances from each solution, and correlated them within-methodologies. We asked to what degree the solutions generated by one data type were consistent with one another; high positive correlations indicate stability within a data set. We next correlated the inter-item distances from each simulation with those of the pairwise method simulations, essentially using the pairwise data as a baseline for comparison. This tells us how well the SpAM data correlates with pairwise solutions across multiple iterations, and how degradation of the SpAM data affects the agreement of the solutions. The tables below (see Tables A2-A3) first report within- and cross-method correlation and stimulus type, from Experiments 1 and 2. The adjacent histograms (see Figures A7-A10) provide a graphical representation of these findings.

Next, we used the Monte Carlo simulations to examine how closely and consistently the solutions conformed to our "ideal spaces" from Experiment 1. Because our wheel and bug stimuli were constructed with specific dimensions, it was possible to derive an ideal space for comparison to solutions derived from each method. These ideal spaces had perfect, orderly arrangements of stimulus items, with equal intervals between levels of each dimension (in essence, perfect squares or cubes). Deviation scores were calculated by taking the Euclidean distance from the *PROXSCAL* coordinates to the ideal location for each stimulus item. Low deviations indicate high conformity to the ideal solutions. Table A4 shows the binned deviation frequencies for each simulation technique and stimulus set. Figure A11 presents a graphical representation of the findings.

In Experiment 2, we examined how well each MDS solution uncovered the hypothesized underlying categorical structures in our animal stimuli. We calculated distance scores that measured the average item-to-item distance from each stimulus item to: 1) members of its own category; 2) items that matched on only the habitat dimension; 3) items that matched on only the avian dimension; and 4) items that were opposite on both dimensions. Solutions with consistent categorization should small within-category distances, large distances to items that are opposites on both dimensions, and intermediate values for items that share singular features. Table A5 presents the binned distance frequencies for each simulation, and Figure A12 presents a graphical representation of the findings.

Table A2. Binned within- and cross-method correlation frequencies, and the percentage of significant correlations for each cimulation as a function of stimulus time from Evneriment 1

			-			Two dii	nensional				Within	-method co	rrelation coefficients				Three di	imensional	_				
Method	Stimuli	Percent Significant	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	-	Percent Significant	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	[]
wise	Wheels	100%	0	0	0	0	50	162	61	22	5	0	100%	0	0	0	18	122	121	35	4	0	0
	Bugs	100%	0	0	0	0	0	0	0	0	0	300	100%	0	0	0	0	0	9	96	166	32	J
M	Wheels	100%	0	0	0	0	0	0	0	0	0	300	%86	12	35	74	67	61	39	10	2	0	0
	Bugs	100%	0	0	0	0	0	0	0	0	0	300	100%	0	0	42	65	61	83	44	4	-	J
luced Granularity	Wheels	100%	0	0	0	0	0	0	0	0	0	300	71%	100	124	68	٢	-	0	0	0	0	0
	Bugs	100%	0	0	0	0	0	0	0	0	0	300	71%	101	121	60	15	e	0	0	0	0	J
luced Subjects	Wheels	100%	0	0	90	10	69	55	10	-	6	138	%66	8	37	39	33	55	53	58	17	0	0
	Bugs	100%	0	0	0	0	0	0	0	0	0	300	96%	Ξ	16	21	69	80	20	24	53	9	C
h Reduced	Wheels	100%	0	0	0	22	87	10	0	0	16	165	85%	51	82	84	36	24	18	4	-	0	0
	Bugs	100%	0	0	0	0	0	0	0	0	0	300	84%	51	4	61	61	40	20	13	6	-	J
											Cross-	method coi	rrelation coefficients										
						Two dii	nensional										Three di	imensional	_				
Method	Stimuli	Percent Significant	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	6.0	-	Percent Significant	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	-
M	Wheels	100%	0	0	0	8	297	170	4	62	59	25	100%	0	29	92	159	187	126	32	0	0	0
	Bugs	100%	0	0	0	0	0	0	0	0	0	625	100%	0	0	6	300	209	89	16	0	0	J
luced Granularity	Wheels	100%	0	0	0	0	285	188	6	67	57	24	%66	7	132	304	141	34	7	0	0	0	0
	Bugs	100%	0	0	0	0	0	0	0	0	0	625	94%	50	89	306	166	14	0	0	0	0	5
luced Subjects	Wheels	91%	57	41	65	49	174	128	18	33	43	17	%66	5	22	61	70	166	201	88	10	7	0
	Bugs	100%	0	0	0	0	0	0	0	0	0	625	%66	4	52	33	70	235	152	67	33	6	0
h Reduced	Wheels	100%	0	0	0	7	285	188	7	67	57	24	%86	19	68	171	128	124	83	10	-	0	0
	Bugs	100%	0	0	0	0	0	0	0	0	0	625	%06	65	48	70	195	157	48	21	20	-	5

Figure 47. Histograms showing the binned within-method correlation frequencies for each simulation, as a function of stimulus type

Table A3.	Binned within-	and cross-method	l correlation f	frequencies, a	and the pe	ercentage of
significant	correlations for	each simulation,	as a function	of stimulus s	set, from l	Experiment 2.

					With	nin-methoo	d correlati	ion coeffic	ients			
Method	Stimuli	Percent Significant	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
Pairwise	Categorical	100%	0	0	0	0	0	4	66	143	82	5
	Continuous	100%	0	0	0	1	25	168	82	21	3	0
Spatial	Categorical	100%	0	0	0	0	0	0	3	118	135	44
	Continuous	100%	0	0	4	58	125	89	17	5	2	0
Reduced Granularity	Categorical	100%	0	0	0	0	0	0	11	78	196	15
	Continuous	96%	14	86	106	66	27	1	0	0	0	0
Reduced Subjects	Categorical	100%	0	0	0	0	0	5	75	139	78	3
	Continuous	100%	0	8	34	70	95	54	34	5	0	0
Both Reduced	Categorical	100%	0	0	0	0	0	27	101	129	42	1
	Continuous	98%	8	36	112	99	31	11	2	1	0	0
					Cro	ss-method	l correlati	on coeffic	ients			
Method	Stimuli	Percent Significant	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
Spatial	Categorical	100%	0	0	0	0	0	14	282	248	81	0
	Continuous	100%	0	1	21	131	288	158	24	2	0	0
Reduced Granularity	Categorical	100%	0	0	0	0	0	40	299	249	37	0
	Continuous	99%	1	44	160	279	119	17	5	0	0	0
Reduced Subjects	Categorical	100%	0	0	0	0	1 214	92 110	283	219	30	0
	Condinuous	79%	1	10	12	180	214	110	32	0	0	0
Both Reduced	Categorical	100%	0	0	0	0	0	94 46	295	212	24	0

Note: Alpha set at p < .05.

Figure A9. Histograms showing the binned within-method correlation frequencies for each simulation, as a function of stimulus set, from Experiment 2, Monte Carlo simulations.

Categorical

Continuous

Figure A10. Histograms showing the binned cross-method correlation frequencies for each simulation, as a function of stimulus set, from Experiment 2, Monte Carlo simulations.

Categorical

Continuous

Table A4. Binned deviation frequencies for each simulation, as a function of stimulus type and dimensionality, from Experiment 1, Monte Carlo simulations.

	Method	wise		M		luced Granularity		luced Subjects		h Reduced			Method	rwise		AM		duced Granularity		duced Subjects		h Reduced	
	Stimuli	Wheels	Bugs	Wheels	Bugs	Wheels	Bugs	Wheels	Bugs	Wheels	Bugs		Stimuli	Wheels	Bugs	Wheels	Bugs	Wheels	Bugs	Wheels	Bugs	Wheels	Bugs
	0.1	55	103	512	540	459	525	263	311	271	266		0.1	6	6	ŝ	20	1	4	4	15	S	10
	0.2	16	167	105	85	119	100	128	171	136	174		0.2	17	22	12	19	9	8	22	36	17	22
	0.3	126	202	×	0	34	0	63	65	52	88		0.3	46	99	39	63	23	29	52	88	36	47
	0.4	93	103	0	0	٢	0	38	42	53	50		0.4	99	82	58	98	39	32	89	93	77	<i>6L</i>
	0.5	49	39	0	0	9	0	22	17	20	27		0.5	101	114	78	104	69	71	93	108	87	88
	0.6	41	6	0	0	0	0	20	11	18	10		0.6	611	111	100	117	80	98	104	94	77	86
	0.7	46	1	0	0	0	0	20	4	20	9		0.7	104	82	16	67	92	98	86	55	84	73
	0.8	23	1	0	0	0	0	12	4	10	5		0.8	74	51	67	49	72	78	72	46	46	58
I	6.0	23	0	0	0	0	0	10	0	7	2	Thu	6.0	45	36	51	33	99	63	48	38	50	41
0 dimensi	-	30	0	0	0	0	0	16	0	17	0	ee dimens	-	27	24	43	24	56	39	32	27	4	48
onal	1	16	0	0	0	0	0	13	0	S	0	ional	1:1	31	18	40	29	59	32	27	28	57	35
	1.2	Π	0	0	0	0	0	7	0	5	0		1.2	18	17	37	26	35	41	24	21	37	37
	1.3	~	0	0	0	0	0	2	0	2	0		1.3	15	26	27	Π	39	35	24	13	33	31
	1.4	٢	0	0	0	0	0	4	0	2	0		1.4	1	٢	17	10	17	22	9	5	11	10
	1.5	5	0	0	0	0	0	4	0	5	0		1.5	2	9	٢	4	10	13	9	9	9	5
	1.6	1	0	0	0	0	0	3	0	-	0		1.6	0	2	4	-	8	10	9	-	4	2
	1.7	0	0	0	0	0	0	0	0	П	0		1.7	0	2	-	0	5	-	0	0	ю	ю
	1.8	0	0	0	0	0	0	0	0	0	0		1.8	0	0	0	0	1	-	1	1	1	0
	1.9	0	0	0	0	0	0	0	0	0	0		1.9	0	0	0	0	0	0	0	0	0	0
	2	0	0	0	0	0	0	0	0	0	0		2	0	0	0	0	0	0	0	0	0	0

Experiment 1, Monte Carlo simulations. Along the X-axis are the upper bounds of each "bin" ("0.1" indicates the frequency of deviations ranging from Figure A11. Histograms showing the binned deviation frequencies for each simulation, as a function of stimulus type and dimensionality, from 0.0 - 0.1, and so on).

Method	Stimuli	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	-	1.1	1.2	1.3	1.4	1.5	1.6
irwise	Within-Category	0	0	56	180	167	101	62	38	П	4	2	-	2	-	0	0
	Off-Dwelling	0	0	10	59	103	100	51	35	33	34	52	35	37	38	36	2
	Off-Avian	0	0	0	0	0	0	20	103	133	115	66	77	45	32	-	0
	Off-Both	0	0	0	0	0	0	1	10	28	74	112	154	182	64	0	0
atial	Within-Category	0	0	153	266	142	38	17	2	0	0	-	2	4	0	0	0
	Off-Dwelling	0	0	0	11	70	103	LL	68	81	48	50	47	54	16	0	0
	Off-Avian	0	0	0	0	0	0	13	73	122	145	112	103	47	10	0	0
	Off-Both	0	0	0	0	0	0	0	4	12	17	51	146	233	161	1	0
duced Granularity	Within-Category	0	0	106	302	132	56	19	9	2	0	0	1	1	0	0	0
	Off-Dwelling	0	0	2	16	64	92	88	82	61	47	49	45	59	20	0	0
	Off-Avian	0	0	0	0	0	0	16	94	129	120	121	92	44	6	0	0
	Off-Both	0	0	0	0	0	0	0	7	12	23	74	135	234	142	3	0
duced Subjects	Within-Category	0	1	104	259	161	68	21	4	7	1	0	1	1	2	0	0
	Off-Dwelling	0	0	-	31	68	86	87	69	62	49	46	54	47	24	-	0
	Off-Avian	0	0	0	0	0	2	19	75	112	135	113	70	70	25	3	-
	Off-Both	0	0	0	0	0	0	0	4	15	40	67	141	208	137	13	0
th Reduced	Within-Category	0	1	93	229	180	81	26	9	7	0	З	0	1	З	0	0
	Off-Dwelling	0	0	0	29	71	79	81	84	64	56	45	56	39	20	1	0
	Off-Avian	0	0	0	0	0	1	30	71	118	129	102	88	56	25	5	0
	Off-Both	0	0	0	0	0	0	ç	Ψ	19	36	67	160	200	101	٢	C

Table A5. Binned distance frequencies (presented as a function of featural dissimilarity) for each

Monte Carlo simulations. Along the X-axis are the upper bounds of each "bin" ("0.1" indicates the frequency of deviations ranging from 0.0 – 0.1, Figure A12. Histograms showing the binned distance frequencies for each simulation, as a function of featural dissimilarity, from Experiment 2, and so on).

Section 4. Individual differences analyses.

In Experiments 1 and 2, we performed individual differences analyses that examined a potential shortcoming of the SpAM technique; namely, that participants may interpret the instructions differentially, or may implement different strategies in order to construct their arrangements. As such, we showed that these potential outliers are not particularly problematic for SpAM, and suggested a way in which to identify "irregular" participants.

Our general strategy was to identify outliers by analyzing the extent to which each participant's MDS space correlated with all others (we did this for SpAM and pairwise data). This entailed several steps: 1) We created individual MDS spaces for each participant, and derived vectors of inter-item distances from those spaces. 2) Next, we correlated the distance vectors across all participants (for each stimulus set and methodology, separately). 3) For each participant, we then calculated two scores: their average correlation coefficient, and the proportion of correlations that were statistically significant. 4) Finally, we rank-ordered the participants, and (in two separate analyses) identified those with the lowest average correlations or proportions of significant correlations. The bottom 25% of participants were identified as outliers.

Once we identified these irregular participants, we created two MDS spaces, one for the entire data set excluding the outliers and another for the outliers themselves. In order to gauge the extent to which these participants skewed the aggregate results, we then correlated the inter-item distances from these exclusionary solutions with the space that included every participant. Table A6 presents the findings, showing the correlation coefficients across aggregate data, and the "regular" and "irregular" solutions (for two- and three-dimensional bugs from Experiment 1, and the categorical animals from Experiment 2).

Stimuli Method SpAM Bugs (2D) Regulars (mean r) Bugs (2D) Irregulars (mean r) Regulars (% sign.) Irregulars (% sign.) Bugs (3D) Irregulars (mean r) Bugs (3D) Irregulars (mean r) Regulars (mean r) Regulars (mean r) Animals (categorical) Irregulars (% sign.) Animals (categorical) Irregulars (mean r) Irregulars (% sign.) Regulars (mean r)	SpAM (aggregate) 0.99 ** 0.04 0.18 ** 0.18 **	Regulars (mean t) -0.05	Irregulars (mean r)	Regulars (% sign.)
Regulars (mean r) Bugs (2D) Irregulars (mean r) Regulars (mean r) Regulars (% sign.) Irregulars (% sign.) Bugs (3D) Regulars (mean r) Regulars (mean r) Regulars (mean r) Regulars (mean r) Animals (categorical) Irregulars (% sign.) Regulars (mean r) Irregulars (% sign.) Irregulars (mean r) Animals (categorical) Irregulars (% sign.) Regulars (% sign.)	0.99 ** -0.04 0.99 ** 0.18 **	-0.05		
Bugs (2D) Irregulars (mean r) Regulars (% sign.) Irregulars (% sign.) Bugs (3D) Regulars (mean r) Bugs (3D) Irregulars (mean r) Regulars (mean r) Regulars (mean r) Animals (categorical) Irregulars (mean r) Animals (categorical) Irregulars (% sign.) Irregulars (% sign.) Regulars (mean r) Irregulars (% sign.) Irregulars (mean r)	-0.04 0.99 ** 0.18 **	-0.05		
Regulars (% sign.) Irregulars (% sign.) Bugs (3D) Regulars (mean r) Regulars (mean r) Regulars (% sign.) Irregulars (% sign.) Animals (categorical) Irregulars (mean r) Regulars (mean r) Irregulars (% sign.) Irregulars (mean r) Regulars (mean r) Irregulars (mean r) Irregulars (% sign.)	0.99 ** 0.18 ** 0.59 **			
Irregulars (% sign.) Regulars (mean r') Bugs (3D) Irregulars (mean r') Regulars (% sign.) Irregulars (% sign.) Animals (categorical) Irregulars (% sign.) Regulars (% sign.) Irregulars (% sign.) Irregulars (% sign.)	0.18 **	** 66.0	-0.04	
Regulars (mean r) Bugs (3D) Irregulars (mean r) Regulars (% sign.) Irregulars (% sign.) Animals (categorical) Irregulars (mean r) Regulars (% sign.) Irregulars (% sign.)	** 0.59	0.17 **	0.02	0.15 **
Bugs (3D) Irregulars (mean r) Regulars (% sign.) Irregulars (% sign.) Animals (categorical) Irregulars (% sign.) Regulars (% sign.)				
Regulars (% sign.) Irregulars (% sign.) Regulars (mean r) Animals (categorical) Irregulars (% sign.) Irregulars (% sign.)	0.32 **	0.19 **		
Irregulars (% sign.) Regulars (mean r) Animals (categorical) Irregulars (mean r) Regulars (% sign.) Irregulars (% sign.)	0.54 **	0.65 **	0.20 **	
Regulars (mean r) Animals (categorical) Irregulars (mean r) Regulars (% sign.) Irregulars (% sign.)	0.09	0.29 **	0.03	0.13 **
Animals (categorical) Irregulars (mean r) Regulars (% sign.) Irregulars (% sign.)	0.91 **			
Regulars (% sign.) Irregulars (% sign.)	0.12 **	0.19 **		
Irregulars (% sign.)	1		1	
	1	1	1	1
Stimuli Method Pairwis	'airwise (aggregate)	Regulars (mean r)	Irregulars (mean r)	Regulars (% sign.)
Regulars (mean r)	0.97 **			
Bugs (2D) Irregulars (mean r)	** 06.0	0.85 **		
Regulars (% sign.)	** 66.0	** 96.0	0.89 **	
Irregulars (% sign.)	0.44 **	0.48 **	0.30 **	0.43 **
Regulars (mean r)	0.79 **			
Bugs (3D) Irregulars (mean r)	0.19 **	0.11 *		
Regulars (% sign.)	0.82 **	0.80 **	0.19 **	
Irregulars (% sign.)	0.16 **	0.12 *	* 60.0	0.20 **
Regulars (mean r)	0.85 **			
Animals (categorical) Irregulars (mean r)	0.42 **	0.35 **		
Regulars (% sign.)	I	ł	I	
Irregulars (%6 sign.)	;	1	1	:

Table A6. Pearson product-moment correlation coefficients for the inter-item distances across solutions derived from "regular" and "irregular" participants, with respect to aggregate solutions (from Experiments 1 and 2).