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Appendix A: introductory analogy to memory-channel based 

decision-making schematizations 

 

Appendix A gives an introduction to the logic of noise influenced memory-based 

decision making models and to the kinds of schematizations used to present them. It will 

help us to set the stage for what is to follow in the article.  

Let us start with a memory-based task. Suppose we would like to make a decision 

about the “redness” of a red object that we are given. Our strategy would consist in 

collecting and storing color traces which are purely red and once we are asked to judge 

redness, we would go to our storage room and pick up some of our prototypical red traces 

and compare their color with the object to be judged. In case our storage and retrieval 

processes would be perfect, we would be able to make a perfect judgment about the redness 

of the object. If this process is not perfect, we might erroneously end up with a sample that 

is not completely red and our judgment will be biased. The analysis of our storage and 

retrieval habits will show us the nature of this bias and be a first step in looking for 

strategies to minimize it.  

In other words, when confronted with a memory-based decision-making task, the 

judge sends a cognitive probe to memory and compares it to existing memory traces. The 

content of what is found in memory will provide the judge with the answer to the decision 

problem. The process is not perfect. We will refer to the “confusion” and “mistakes” in this 

process as “noise”. The bias of the judgment can be traced back to two possible sources: one 

is a biased sample in memory (which results from the noise in the storage channel); and the 

other one is biased sampling from memory (which results from the noise in the retrieval 

channel). The combination of the storage and retrieval channels constitutes the overall 

memory channel. We assume that the channel has certain properties that we would like to 

define.  

In information theory it is customary to present these kinds of channels in a 

diagram similar to the ones shown in Figure A.1 (see Massey, 1998, Ch.4; Cover and 

Thomas, 2006, Ch.7). Figure A.1a essentially tells us that the noisy channel mixes blue and 

red input evidences. As long as the original still prevails, this will turn the red into a ruby 

and blue into violet. We depicted the noise with crossover arrows. The little numbers next 

to the arrows tell us about the respective transition probabilities involved in the process. 

Besides mixing evidence, we have to consider that not all input might make it. The effect is 

equal to deleting parts of our sample. We start out with equal amounts of red and blue [50% 

each]. 70% of each goes straight through the channel (we call this the identify 

transformation), 20% of each color is mixed with the other color (noise) and 10% of each is 

deleted. 
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Figure A.1b opens up the overall memory channel and shows that the overall 

memory channel actually consists of two different sub-channels. The noisy storage channel 

is followed by the noisy retrieval channel. In Figure A.1b, we start off with less red than blue 

[0.3, 0.7], and it is more likely to confuse blue with red [0.3], than red with blue [0.2]. The 

retrieval channel is in a special state of “highest uncertainty/entropy” (the uniform 

distribution), which leads to a homogeneous output estimate of ruby-violet, independent of 

the input evidence. 

 

Figure A.1: Two first examples of the memory channel: (a) overall memory channel; (b) opened 

up into storage and retrieval subchannels 

    
Source: author. 

 

It is important to note that the intermediate memory step might be very short. 

Several perceptual tasks rely on sensory memory that corresponds approximately to the 

initial 200–500 milliseconds after an item is perceived. Therefore, the process might not 

appear as schematic as presented here (storing in memory, then sending a probe to 

memory, etc.), but rather as one process. Notwithstanding, without having anything 

impregnated in any kind of (whatsoever short and instable) memory, no perception could 

occur. Therefore, memory (of some kind) always makes part of any kind of judgment and 

decision-making. 

Throughout the article, we will identify which kind of noise is requires in the overall 

channel (Figure A.1a) to replicate six cognitive biases, and which kind of noise is necessary 

in the retrieval channel (Figure A.1b) to replicate two additional biases. 

 

Appendix B: the MINERVA-DM channel 

Appendix B uses information-theoretic channel logic (see Appendix A) to discuss the 

essential properties of the MINERVA-DM channel (see Hintzman, 1988; Dougherty, et.al., 

1999) (see Figure B.1). The goal is not to replicate the exact nature of the MINERVA-

decision-making model, but to model its essential logic with the help of an information-
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theoretic channel presentation (see Appendix A; more formal in Massey, 1998, Ch.4; Cover 

and Thomas, 2006, Ch.7). Hintzman (1988) chooses a ternary input variable of -1, 0, +1, 

which is basically a binary alphabet, plus the possibility of deletion. The storage channel (in 

MINERVA called “learning channel”) is implemented with what is known as a “Binary 

Erasure Channel” (BEC) in information theory. The retrieval channel is implemented with 

what is known as the “Binary Symmetric Channel” (BSC). The channel is symmetric because 

both identity transitions, and both noise transitions are equal, p(O1|M1) = p(O2|M2) = Sc, and 

p(O2|M1) = p(O1|M2) = 1 - Sc. Both are very special and important channels in information 

theory (Massey, 1998, Ch.4; Cover and Thomas, 2006, Ch.7). They are the simplest existing 

channels and their neat properties enable a straightforward analysis with nice results.  

 

Figure B.1: Rough schematization of the MINERVA-DM model as a memory channel 

 

Source: author, based on the logic presented in Hintzman, 1988 and Doughterty, et.al, 1999. 

 

The technical details of the specific implementation of MINERVA-DM are more 

involved than this simplified schematization. One aspect is that Hintzman (1988) chose a 

multi-trace memory model to implement MINERVA. He also chose not to apply the noise to 

an entire memory trace, but to its constituents, which he calls features. He uses a ternary 

code (-1, 0, +1) to represent the value of each feature, which make up the content of specific 

memories. Each of these features is passed through the channel, which has different 

probabilities of converting a -1 into a +1, and vice versa, or deleting it, which means 

converting it to 0. As the features change, the content of the memory trace change and it can 

even lead to the fact that the memory does not represent anymore what it originally meant 

to represent. The rate with which the content of the memory traces change, depends on the 

transition probabilities that convert the values of the features and on the criterion that 

defines when a code in a memory matches or not.  

Input1 Memory1 Output1

Input2 Memory2 Output2

Input0 deletedMemory0

p(M1|I1) = L 

p(M0|I1) = (1-L)

p(M0|I0) = 1 

Input  ➙ Learning Channel     ➙ Memory    ➙ Retrieval Channel  ➙ Output

p(M0|I2) = (1-L)

p(M2|I2) = L 

p(O1|M1) = Sc

In the case presented here, there are only two different memory traces (chunks). The two resulting channels are very special and important in Information 
Theory. They are the most simple existing channels and their neat symmetric properties enable a straightforward analysis with nice results. The first one is 
called “Binary Erasure Channel” (BEC), and the second one “Binary Symmetric Channel” (BSC). Their repsective channel capacities are and CBSC= 1-H(Sc).  

MINERVA2 is more complex than this simplified representation and includes variations within traces (parts of traces are deleted, not entire traces), a very 
particular matching process, as well as many more than just two different kinds of traces (in each applications with different distributions). This increase in 
complexity surely influences the concrete values of the probabilities in the channel and the outputs, but (especially over many traces), it does not change the 
basic properties of the channel (…Sc can be from 0-1, in this case here, it only makes sense to have it from 05-1)….

Studying these properties, it quickly becomes clear that the only way that the variation of L impacts the output is through a reduction of the sample size of 
traces in memory, by exactly [1-L], which leads to the well-known channel capacity of the BEC: CBEC= L (see Cover and Tomas, Ch.7; Massey, Ch.4). The reason 
is that L is applied symmetrically to all inputs and there is no crossover possibility in the Learning Channel, BEC. This is in agreement with the MINERVA2 
similation results of Dougherty, et.al., 1999, shown in their Appendix B. As pointed out by them, the effect of smaller sample sizes is increased variability (the 
inverse of the law of the large numbers). On contrary, the Retrieval Channel, which is BSC, is sensible to variations in S C (this is also in agreement with the 
simulation of Appendix B, Dougherty, et.al., 1999). Decreasing SC (i.e. from 1-0.5, which is the range that makes sense in this representation), increases the 
crossover probability and therefore makes both outputs “more similar”. The effect on the output is known as “conservatism” in psychology, “regression 
toward the mean” in statistics or “increased entropy” of the output in Information Theory. This last definition is in agrement with the terminoloy that 
describes the well-known channel capacity of the BSC: CBSC= 1-H(Sc) (see Cover and Tomas, Ch.7; Massey, Ch.4).

p(O2|M1) = 1-Sc

p(O1|M2) = 1-Sc

p(O2|M2) = Sc

THE MINERVA2 CHANNEL
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MINERVA also includes a particular matching process (which is not further justified 

by the authors). It basically replicates what is known as the Hamming distance between 

codewords in information theory. These particular specifications do not change the basic 

properties of the MINERVA-DM channel, which follows the logic of a BEC followed by a BSC: 

the storage/learning channel can delete input, and the retrieval channel has the possibility 

that “false friends” sneak into the final judgment. 

Studying the logic of the MINERVA-DM channel, it becomes clear that the only way 

that the variation of L impacts the output is through a reduction of the sample size of traces 

in memory, by exactly [1-L], which leads to the well-known channel capacity of the BEC: 

CBEC= L (see Massey, 1998, Ch.4; Cover and Thomas, 2006, Ch.7). The reason is that L is 

applied symmetrically to all inputs and that there is no crossover possibility in the 

storage/learning channel. This prediction was reconfirmed by the MINERVA-DM simulation 

results of Dougherty, et.al., 1999, shown in their Appendix C. As pointed out by them, the 

effect of smaller sample sizes is increased variability (the inverse of the law of the large 

numbers). On contrary, the retrieval channel, which is BSC, is sensible to variations in SC 

(this is also in agreement with the simulation of Appendix C, Dougherty, et.al., 1999). The 

smaller SC, the larger the crossover probability. The result is that both outputs are “more 

similar”, i.e. they are closer to their “average”, which is the uniform distribution (in this 

binary case: 0.5-0.5). Since the retrieval channel is BSC, its channel capacity is: CBSC= 1-H(Sc) 

(see Massey, 1998, Ch.4; Cover and Thomas, 2006, Ch.7). MINERVA-DM applies noise of the 

same distribution to all input evidence. As we will show in Appendixes B and D, this 

requirement is not necessary to assure conservatism.  

 

 

Appendix C: Effects of Properties N and S on a bounded noise 

distribution 

This Appendix shows how Properties N and S lead to the fact that all mean estimates 

Ê, based on some concrete input evidence ei, (Expct.val.[Ê|ei]), must lie somewhere in the 

grey areas of Figure 3b. For likelihood/probability/frequency estimates, the interval 

variables ei are replaced with probabilities. In this case, the exercise focuses directly at 

estimating the value Expct.val.[p(p(Ê)|p(ei))]. For reasons of clarity of presentation we will 

treat both cases identically and refer to E instead of P(E).  

We use a little trick and scale the identity transition ei to 0: e0 = ê0 = 0. We denote all 

estimates to the “positive” side with êu,  u={0,1,2…u}, and estimates to the “negative” side of 

the identity transition with êd, d={0,1,2…d}. We stick to the assumption of a one-

dimensional equidistant interval scale, which results in: êu = ê0 + u∆; êd = ê0 - d∆. The result 

looks like Figure Ca. Property N assures that none of the “weights” can be larger than the 

value assigned to e0 (identity transition). Property N assures that the weights get smaller 

the further they are away from the identity value, and Property S demands that the weights 
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are symmetrical around the identity value. The total number of possible values is: n = 

u+d+1, whereas +1 counts for the identity value at 0 (note that we do not consider the 

forgetting / inaccessibility option here. If we would, the number of possible values would be 

n+1). 

Visually the logic of the proof can be seen when playing around with Figures C. When 

moving the balance triangle all the way to the negative extreme (d ≤ u), the minimum value 

is 0 and the maximum positive value can be achieved by placing the highest possible weight 

on the largest possible numbers (Figure Cb). Considering the restrictions of Property N, the 

uniform distribution achieves this maximum value (in this case: u∆/2). In Figure Cc, d ≥ u, 

and since d is preceded by a minus sign, the expected value can only be negative, with: [u-

d]∆/2 ≤ Expected value ≤ 0. 

 

Figure C: (a) representation of an evidence at the middle of the possible scale in the task; 

(b) representation of evidence at the lowest possible value of the scale; (c) representation of 

evidence one step from the highest possible value on the scale. 

      

Source: author. 

 

 In a more formal proof we first define the limits of the possible expected values 

(note that EV without hat and no underline, refers to “Expected Value”, not to be confused 
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=> if d ≤u, then 0 ≤ EV[Ê|e0] ≤ [(u-d)∆]/2 = [êu+êd ]/2= its midrange point m, see Figure 3b. 

If d ≥ u (group all possible symmetric noises under the same sum and cancel them 

out):  

  [ |  ]   ∑  (     )    (             )   ∑  (     )    (      )
 
       

   

 ∑  (     )   (   )
 
        

 ≤ 0 (its maximum), if p(êd|e0)=0, for all d>u;   

 ≥ with its minimum if P(Ê|e0) = 1/n (uniform, limited by Property N), at: 

 

      
 

 
∑ (   )  
       

  

     
∑     (   )
                                        

(   ) 

 
  

=> if d ≥ u, then 0 ≥ EV[Ê|e0] ≥ [(u-d)∆]/2 = [êu+êd ]/2= its midrange point mr, see Figure 3b. 

 

 

Appendix D: Fitting the Gaussian channel 

This Appendix shows how to convert a Gaussian channel into discrete transition 

probabilities and how to fit it to empirical finding. Usually, the most straightforward way of 

fitting normal noise to empirical findings is to set up a program (for example in MATLAB) 

that minimizes the distance between the empirical transition matrix and the modeled 
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transition matrix, which is defined by the cutoff criteria between the variables, and the 

mean and variables of the normal distribution. Least squares can be used.  

In the following I will go “manually” through the simple process of the ternary 

exercise of Figure 10. The problem that we face is that we have two degrees of freedom to 

work with when fitting the curves to the empirical data: the mean and variance of the 

normal distribution. However, since we suppose an equidistant interval scale (in this case 

∆≈3.83σ), the means of all three normal curves are defined once two means are chosen. The 

remaining degrees of freedom stem from the adjustable variances. This implies that it is not 

possible to perfectly fit the three curves to the six degrees of freedom of the empirical 

finding. We would not have had this problem in a binary decision-making task.  

We start by arbitrarily defining that e1 fits the standard normal curve with µ=0 and 

σ=1. We know that the identity transition of e1 is 0.971 and can therefore use the inverse of 

the cumulative normal distribution to identify the value x: Ф(1.896) ≈ 0.971, where Ф(x) is 

the cumulative standard normal function. We then have the freedom of choice for the mean 

and variance of e2 (defined by the variables of the normal probability density function: f(x) 

= 1/√(2π)σ e –(x-µ)^2/2σ^2), as well as for the variance of e3 (once we define the mean of e2, the 

equidistance requirement determines the mean of e3). Instead of fitting all estimates as 

good as possible, I took the deliberate decision to “sacrifice” the fit of the noise-transitions 

p(ê2|e1) and p(ê3|e1), since they are very small. It turns out a mean of µ2=3.83 and variance 

of σ2=1.33 for e2 and a variance of σ3=2.92 for e3 fit to model the remaining transition 

probabilities of those curves. As expected, the “cost” paid by the mismatch of e1 is not very 

large.  

 

Appendix E: Effects of Properties S and U on an unbounded 
noise distribution 

This Appendix shows how Properties S and U lead to the fact that all average 

estimates Ê, based on some concrete input evidence ei, (Expct.val.[Ê|ei]), must lie 

somewhere in the grey areas of Figure 3b. As in Appendix C, we will refer to exercises that 

focus on estimating absolute numbers, E, but the same argument holds for estimations of 

discretized probabilities P(E). The basic logic of the effect of Property U can be seen when 

looking at what happens when we add the overshooting noise to the extremes of a 

symmetric distribution. A symmetric distribution around ei has expected value = ei. We can 

normalize Expct.val.[E] = 0 (see Figure Ea). When the valid scale is limited on the left side at 

the identity (Figure Eb), and the weight of the (formerly) negative values is added to the 

left-extreme value 0, the expected value ≤ u∆/2. When the scale is limited to the right (Figure 

Ec): Expected value ≥ [u-d]∆/2. Following this logic results in the fact that the subjective 

estimates Ê, must lie somewhere within the grey-shaded areas in Figure 3b.  
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Figure E: (a) normalized around 0; (b) left overshoot added to negative extreme; (c) right 

overshoot added to positive extreme. 

          

Source: author. 

 The formal proof follows the same notations as in Appendix C, with the addition that 
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Appendix F: Effects of Properties D and N 

 We proof that a single-peak unimodal (Property N) noise distribution that has a 

doubly stochastic transition matrix (Property D) results in regressive behavior for any kind 

of input distribution (conservatism). We start with the reformulation of our conservatism 

requirement, equation (III): 

 0 ≤ cov(E,Ê) ≤ Var(E) 

 0 ≤ EV[EÊ] - EV[E] * EV[Ê] ≤ EV[E2] – (EV[E])2 ; (Error! Bookmark not defined.) 

For n-ary decision-making tasks, scale to: 

  [E]  ∑  (  )     
 
     ; whereas     are positive numbers (in case of likelihood 

estimates ∑    
 
      and  (  ) is uniform with  (  )  

 

 
 (like in Hockley’s exercise, or, 

for likelihood estimates, one can imagine that likelihoods are represented by n memory 

traces, each representing the likelihood with its respective value   ). 

       [E ]    [E ];  

  ∑ ∑  (   ̂ )    ̂ 
 
   

 
    ∑  (  )

 
     

  ; 

  ∑ ∑  (  )  ( ̂ |  )    ̂ 
 
   

 
    ∑  (  )

 
     

  ; multiplied with n; 

  ∑ ∑  ( ̂ |  )    ̂ 
 
   

 
    ∑   

  
    ; whereas  ( ̂ |  )are the doubly stochastic weights 

of the transition matrix, with ∑  ( ̂ |  )
 
      and ∑  ( ̂ |  )

 
     . 

First, we focus on the left side of the inequality, for which we will show that 

Properties N and D assure that the resulting correlation cannot be negative: 

  ∑ ∑  ( ̂ |  )    ̂ 
 
   

 
    ∑   ∑  ̂  [ ( ̂ |  )    ]

 
   

 
   ; whereas    consists of 

positive numbers which represent how much smaller the noise is than the identity 

transition  ( ̂ |  ). Note that, according to Property N,    = 0 at     , and increases with j 

being more distant from k.  

  ∑    [∑  ̂   ( ̂ |  )  ∑  ̂ 
 
     

 
   ] 

    ∑    ∑  ̂  
 
   (   )

 
   ;  

Note that there are positive and negative values of  ̂ , since   [E]    [Ê]   , 

therefore let ∑  ̂ 
 
    [∑  ̂  

 
     ]  [∑  ̂  

  
    ], with |-j|+|+j|=n, whereas  ̂   denotes all 

negative values of  ̂ , and  ̂   stands for all positive values of  ̂ . Since both parts have the 

equal weight, it is possible to rearrange both sums and organize them in according to equal 

distributions (“weigh them against each other”, which we call w), with – [∑  ̂  ]
 
      

[∑  ̂  ] 
  
      ∑   

 
    , with w always being positive. Let      correspond to    of  ̂   and 

    correspond to    of  ̂  : 
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  ∑    [∑  ̂  (    )
 
      ∑  ̂  (    )]

  
      

    ∑    [∑   (   )
 
     

   

∑   (    )] 
 
    ∑    ∑   (       )

 
   

 
    ∑    ∑   (    )

 
   

 
   . 

For negative    :      is also negative for all    with m≥k (given Property N), but not 

necessarily for    with m<k (since noise is not symmetric around identity m=k). Likewise, 

for positive    :      is also positive for all    with m≤k, but not necessarily for    with 

m>k. However, when rearranging to ∑   
 
    ∑   

 
   (    ), we can see (since 

  [E]  ∑     
 
     ), that it is impossible that these eventualities drag the second sum 

into the negative 

   ∑   
 
    ∑   

 
         . 

This shows that the correlation cannot be negative (    [E ]). The right side of 

our initial inequality from equation (III) can be shown with similar reformulations, but 

actually, this proof and its insight are not new. It is very well known in information theory 

that a doubly stochastic transition matrix converts the channel input in a way that the 

output is overall closer to its mean (“stochastic mixing increases entropy”) (see Cover and 

Thomas, 2006, Ch.4, p. 88, Exercise 4.1). We have defined conservatism as the output being 

“closer to the mean” than the input (see equation (II), formulated in variance). The new part 

is, that in our case, we claim that conservatism also implies a positive correlation between 

input and output (out estimates have “more to do with the evidence than they don’t”). 

Property N assures this, as shown above.  

 


