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Abstract

Craig, Lewandowsky, and Little (in press) used computational simulations to explore

whether people discount errors in probabilistic category learning. This supplementary

document provides full descriptions of the computational models and presents simulation

results intended to complement those reported in Craig et al. (in press). This supplement

is not intended as a stand-alone document. Refer to Craig et al. (in press) for further

explanation.



Error discounting 3

Supplementary material for

“Error Discounting in Probabilistic Category Learning”

by Craig, Lewandowsky, and Little

Craig et al. (in press) explored the existence of error discounting in probabilistic

categorization. Part of their analysis involved the use a series of computational models,

the GCM (Nosofsky, 1986), MAC (Stewart, Brown, & Chater, 2002), RASHNL (Kruschke

& Johansen, 1999), and ATRIUM (Erickson & Kruschke, 1998). Craig et al. (in press)

found that the MAC, RASHNL, and ATRIUM fit data from two probabilistic

categorization experiments significantly better when they included a mechanism to

discount errors. The GCM did not include an error-discounting mechanism, instead poor

performance of GCM ruled out an alternative sample-size explanation for error

discounting. This supplement provides additional details of the models, modeling

procedures, and results from the fits with each of the four models.

GCM: A Sample-Size Explanation

A possible explanation for the experimental results in Craig et al. (in press) was

that the slow post-shift learning was not due to a discounting of error, but instead was an

automatic by-product of the inevitable increase in memorized “sample size” during

learning. Specifically, in the very early stages of training, when few items had been

presented, on an exemplar view each further individual stimulus will have a relatively large

impact. However, at later stages of learning, new items become increasingly insignificant

in relation to the overall number of exemplars already encountered and memorized, thus

limiting their impact. The slow adaptation to the shift in the experiments could therefore

result from the small impact of items later in training relative to items early in training.

We explored this alternative within the GCM (Nosofsky, 1986). The GCM contains no
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associative learning mechanism but represents all encountered instances in memory, thus

providing a quantitative instantiation of the sample-size hypothesis.

GCM Specification. The GCM assumes that on each trial the current item activates

all previously encountered stimuli stored in memory according to:

sij = exp(−c× dij), (1)

where the similarity, sij , between items i and j is determined by the distance between

them in psychological space, dij = |xi − xj | , which in the present case involves only a

single dimension. (Note that for simplicity of exposition, all equations reported in this

supplement are tailored to the fact that our stimuli were uni-dimensional.) The specificity

parameter, c, determines the sharpness of the exponential function.

Similarities are converted to response probabilities by applying Luce’s choice rule

(Luce, 1963):

P (A|i) =
(
∑

j∈A sij)
γ

(
∑

j∈A sij)γ + (
∑

j∈B sij)γ)
, (2)

where the response scaling parameter, γ, allows responding to vary between

probability-matching when γ ' 1 and maximizing when γ � 1 (Ashby & Maddox, 1993;

Nosofsky & Johansen, 2000). Thus, upon presentation of a test stimulus, it is compared

against all stored exemplars in each of the categories separately, and a response is selected

based on which category yields the greatest summed similarity.

GCM Simulations. For the square stimuli used in the present study, the perceived

psychological distance between adjacent stimuli has been shown to be equivalent to the

actual perceptual distance between the stimuli (Colreavy & Lewandowsky, 2008). Thus,

for the simulations, the four stimuli were coded as the integers 1 to 4. The GCM was fit

separately to each participant’s mean response probabilities for all items in all blocks. The
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GCM was presented with the training sequences shown to participants. Parameters (c and

γ) were capped at 25. Both parameters were estimated using the SIMPLEX algorithm

(Nelder & Mead, 1965) to minimize the negative binomial log-likelihood:

− lnL = −
∑
i

di ln(pi) + (ni − di) ln(1− pi), (3)

where pi is the model’s predicted probability of category A for item i, di is the observed

number of A responses made for item i, and ni is the number of times item i was

presented.

Table 1 shows the GCM’s estimated parameters for both experiments. As shown in

Figures 1 and 2, the GCM failed to capture the data in some crucial ways: In particular,

it was unable to adjust its predictions in response to the probability shift. The GCM only

managed to capture the early condition of Experiment 1, presumably because only 10

presentations of each item had occurred before the shift. However, in all other conditions,

the GCM could not accumulate enough new evidence within the number of training trials

to reverse its predicted probabilities. (Note, however, that there is a downward trend in

the predicted slopes after the shifts, which indicates that given massively extended

training, the GCM’s performance might come to mirror the final outcome probabilities).

In conclusion, the experimental results in Craig et al. (in press) cannot be accommodated

by an explanation based solely on memorized sample size.

MAC model: Error discounting and Decisional Recency

The MAC model (Stewart et al., 2002) makes categorization decisions based only on

perceptual and feedback information provided on the previous trial. With the exception of

the immediately preceding item, the MAC model does not retain a representation of

previously encountered exemplars.
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Formal description of the MAC model. We present two versions of the MAC model.

The first is the standard version of the model as outlined by Stewart et al. (2002). The

second is a new version of the model, modified to incorporate error discounting via an

annealing mechanism.

The MAC model makes categorization decisions by computing the psychological

distance between the current stimulus and the previous one (this distance is isomorphic to

the perceptual difference used in our decisional-recency analysis). The probability of

repeating the same category response, P(same), is given by:

P (same category) = e−bd
2

(4)

where d is the psychological distance between the current and previous stimulus, and b is

a constant controlling the steepness of the Gaussian generalization gradient. Thus, b

controls the rate at which psychological distance required to respond with a different

category than the previous trial. Lower values of b will result in stimuli being perceived as

more similar, thus increasing the probability that the response on the current trial will

match the category feedback given on the previous trial.

The second, modified version of the MAC model includes an error-discounting

mechanism, implemented by annealing the parameter b for trials following an error.

Specifically, b was set to decrease across trials in this version, thus forcing the model to

treat all items as if they were similar to the one just seen on the previous trial. Thus, the

model effectively ignores the feedback from trials following errors.

To incorporate the error-discounting mechanism, we generated two forms of

Equation 4. The first form of the equation was used on trials for which the response given

on the previous trial was correct. The second version of the equation was used on trials

following an error and instantiated annealing using the formalism provided in RASHNL
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(Kruschke & Johansen, 1999). For this second form of the equation, the initial value of b

was multiplied by an annealing factor, r, given by:

r(t) = 1/(1 + ρ× t), (5)

where ρ is a freely estimated, non-negative, scheduling parameter that controls the rate of

annealing. Larger values of ρ lead to faster annealing, and when ρ is clamped at zero, the

model exhibits no annealing at all (and saves a parameter in the process). This annealing

mechanism has the effect of reducing the steepness of the Gaussian generalization gradient

on the psychological distance between pairs of stimuli over trials. Thus, the mechanism

gradually reduces the probability with which the model will shift its category response on

a trial following an error. In summary, the standard MAC model has one parameter, the

size parameter, b. The modified MAC model includes both the size parameter, b, and the

annealing parameter, ρ.

MAC model simulations. The MAC model was fit in the same manner as the GCM.

For the modified version, the ρ parameter was capped at 100. In order to closely model

the participants’ trial-by-trial behavior, we used each participant’s individual responses,

rather than the MAC model’s own responses, to guide the feedback given to the model.

That is, for each response, the MAC model computed its prediction based on the

participant’s response and feedback on the previous trial, rather than its own preceding

response (use of the model’s own response considerably worsened the model’s fit). One of

the participants for the late condition of Experiment 2 was not fit, as after removing trials

with extreme reaction times, this participant did not have responses remaining for all

items across all blocks. The best-fitting parameter values are presented in Table 2.

The MAC model captured the data qualitatively, but not quantitatively; the fits to

Experiments 1 and 2 are shown in Figures 3 and 4, respectively. The slope increased
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above chance early in training, and crossed through chance following the shift in

reinforcement probabilities. However, the model’s slopes fell short of participants’ slopes

and the model adapted to the shift much faster than did participants.

We do not consider the failure of the MAC model to quantitatively capture the data

to be a core issue: The initial version of the MAC model was not designed to be a

complete categorization model, but rather a means to explore perceptual recency effects in

categorization Stewart et al. (2002). In that spirit, interest was on whether the model

could better account for the data with the inclusion of an error-discounting mechanism.

RASHNL: Error Discounting via Annealing of Learning

Formal description of RASHNL. RASHNL (Kruschke & Johansen, 1999) is an

exemplar-based connectionist model of probabilistic categorization that was developed as

an extension of ALCOVE (Attention Learning COVEring map; Kruschke, 1992), which is

itself an extension of the GCM (Nosofsky, 1986). Central to RASHNL is the concept of

annealing of learning rates. This annealing mechanism captures error discounting by

gradually decreasing the rate at which the model learns over time.

The annealed learning provides the model with various advantages over a fixed

learning rate: In addition to the general notion that it allows for quick adaptation early in

training, followed by slow fine-tuning of probabilistic responding (Amari, 1967; Heskes &

Kappen, 1991; Murata, Kawanabe, Ziehe, Müller, & Amari, 2002), annealed learning may

also help RASHNL avoid unduly high sensitivity to order among stimuli late in training,

such as observed in ALCOVE (Lewandowsky, 1995). In confirmation, the limited tests of

RASHNL available to date have consistently found that the annealing-based

error-discounting mechanism improves the ability of the model to account for both

probabilistic (Kruschke & Johansen, 1999) and non-probabilistic (Blair & Homa, 2005)

categorization behavior.
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RASHNL has a layer of input nodes that correspond to the dimensions of the

stimulus. As RASHNL is an exemplar-based model, new items are categorized based on

their similarity to previously encountered category members (Kruschke & Johansen, 1999;

Nosofsky, 1986). Hence, the input nodes connect to a layer of hidden exemplar nodes,

which correspond to the training stimuli. Activation of the jth exemplar node is given by:

hj = exp(−c× |ψj − d|), (6)

where c, the specificity, is a free parameter that determines the slope of the gradient of the

receptive field of each exemplar; that is, the slope of the exponential decline in similarity

with increasing distance between the current stimulus and the jth stored exemplar. (The

present stimuli were uni-dimensional; accordingly, we removed RASHNL’s gain activation,

attention shifting, and attention-updating mechanisms, all of which only apply to

multi-dimensional stimuli.)

Exemplar nodes connect to output nodes, which correspond to the available

categories. Activation of the kth category node, ak, is given by:

ak =
∑
j

wkj hj , (7)

where wkj is a weight associating an exemplar with a category. Category activations are

mapped onto response probabilities using a version of Luce’s (1963) choice rule, such that

the probability of categorizing a stimulus into category K is determined by the

exponentiated activation of category K over the sum of the exponentiated activation of all

categories, given by:

P (K) = exp(ϕak)/
∑
i

exp(ϕai), (8)

where ϕ is a scaling parameter representing decisiveness. If ϕ is large, then a small

activation advantage for category K will result in large preference for category K,
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corresponding to maximizing behavior. Conversely, if ϕ is small, the response will be more

uncertain and in proportion to the relative activations, thus corresponding to probability

matching.

RASHNL is an error-driven learning model, such that each response is followed by

feedback indicating the correct category in the form of teacher values for each category

node. The error associated with a response is given by:

E =
1
2

∑
k

(tk − ak)2, (9)

where t is the teacher value, such that tk = 1 if the stimulus is a member of category k,

and tk = 0 if the stimulus is not a member of category k.

Learning proceeds through the minimization of E via adjustment of association

weights by gradient descent on error, given by:

∆wkj = λ(tk − ak)hj , (10)

where λ represents the learning rate. Crucially for the current experiments, this learning

rate is annealed, such that as training progresses the rate of learning is slowed. Although

several annealing mechanisms have been explored within the neural network literature

(Amari, 1967; Bös & Amari, 1998; Heskes & Kappen, 1991; Müller, Ziehe, Murata, &

Amari, 1998; Murata et al., 2002), RASHNL uses a “search and converge” mechanism to

decrease learning rates (see e.g., Darken & Moody, 1991). On each trial, t, the initial

learning rate is multiplied by an annealing factor, r, as per the earlier Equation 5. The

annealing function allows the model to make large shifts in learning early in training,

whereas from around trial 1/ρ onward, the learning rates rapidly reduce and converge to

zero. In addition to the annealing rate, ρ, this version of RASHNL had three other free

parameters: specificity, c, the probability-mapping parameter, ϕ, and the weight-learning

rate, λ.
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RASHNL simulations. The model was applied to the data in the same manner as

the GCM. RASHNL was fit using the models’ own corrective feedback to guide model

behavior. In both fits, we compared two versions of RASHNL: One in which the annealing

parameter, ρ , was freely estimated and another one in which it was set to zero.

Figures 5 and 6 show the mean predictions of RASHNL when fit to the data of

individual participants with annealing turned on for Experiments 1 and 2 respectively.

Quite in contrast to the GCM and the MAC model, RASHNL captured the fast initial

learning and slower post-shift learning that was displayed by participants. The

corresponding mean (and median) best-fitting parameter values (aggregating across the

fits to individual subjects) are shown in Table 3.

rATRIUM: Annealing Without Exemplars

The majority of rule-based models, including the GRT, do not include associative

learning mechanisms. As an associative learning mechanism is particularly suited for

investigating error discounting, we selected the rule module of ATRIUM (Erickson &

Kruschke, 1998) as an alternative candidate model for the present data. ATRIUM’s rule

module learns to associate rules with particular categories via a standard network learning

algorithm, permitting implementation of annealing in the same manner as in RASHNL.

ATRIUM is a hybrid model that relies on both exemplars and rules; here, we

eliminated the exemplar module because we were exclusively interested in the generality

of annealing and its applicability within a rule-based architecture (hence we use the label

rATRIUM for this variant of the model from here on). rATRIUM divides the category

space by a rule boundary set perpendicular to the relevant stimulus dimension. The

stimulus dimension is represented by two rule nodes, rsmall and rlarge, whose activations

are given by:
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rsmall = 1− 1
1 + exp[−µ(d+ β)]

, (11)

and by:

rlarge =
1

1 + exp[−µ(d+ β)]
, (12)

where d represents the value of a given item on the stimulus dimension. Each of these rule

nodes forms a sigmoid threshold function, centered on the rule boundary, such that larger

dimensional inputs will result in higher activation of the large rule node, while smaller

dimensional inputs will result in a higher activation of the small rule node. The parameter

µ represents the gain of the sigmoid (i.e., its steepness), and thus controls the level of

perceptual noise (or its equivalent) as dimensional values approach the rule boundary.

Large values of µ result in stimuli close to the rule boundary being more confusable. The

parameter β controls the position of the rule boundary.

The rule nodes are connected to output nodes that correspond to the possible

category selections. The activation of output nodes, ak, for each category, k, is calculated

as the sum of the activations of the small and large rule nodes, given by:

ak = wklarge
rlarge + wksmall

rsmall, (13)

where the activation is moderated by the learned association weights, wk, between the rule

and output nodes. As in RASHNL, the association weights are updated by minimizing

mean square error during learning:

∆wkj = λ(tk − ak)rj , (14)

where λ is a freely estimated parameter which controls the rate of learning. Finally,

output activations are converted into probabilities as in Equation 8 in RASHNL.
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For present purposes, the annealing mechanism from RASHNL, given in Equation 5,

was imported into rATRIUM: Thus, an annealing rate, ρ, controlled the rate at which the

weight learning rate, λ, was adjusted on successive trials.

In summary, the model has four free parameters: A gain constant, µ, which sets the

standard deviation of the perceptual noise; a scaling constant, ϕ, which maps output

probabilities to participant responses; the annealing rate, ρ; and learning rate, λ.

The model was fit in the same manor as the fits with RASHNL. Figures 7 and 8

show the fits of rATRIUM to Experiment 1 and Experiment 2 respectively. Like

RASHNL, rATRIUM provided a good fit to the data. As shown in the figures, the model

closely tracked the behavior of the participants throughout training.

Fit Statistics

In Craig et al. (in press), a series of fit statistics were used to compare the fits of the

four models, viz. AIC (Akaike Information Criterion; Akaike, 1974) and wi(AIC) (AIC

weights; Wagenmakers & Farrell, 2004), and BIC (Bayesian Information Criterion) and

wi(BIC) (BIC weights; Wagenmakers & Farrell, 2004) to compare the models. AIC and

BIC adjust for model complexity and flexibility. When corrected for small sample sizes,

the AIC (AICc) is given by:

AICc = −2 lnL+ 2V +
2V (V + 1)
n− V − 1

, (15)

where L is the maximum likelihood for the given model with V free parameters taken over

n observations. The corrected AIC is recommended for use of samples where the ratio of

data points to parameters is less than 40. The AIC thus combines two sources of

information: Lack of fit (represented by the log likelihood) and a penalty term for model

complexity (represented by the second and third terms in the above equation). The BIC is

given by:

BIC = −2 lnL+ V lnn. (16)
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Unlike AIC, whose penalty relies on the number of parameters only, the BIC

additionally penalizes models based on the number of data points being fitted.

AICc and BIC values were converted into AIC and BIC weights (Wagenmakers &

Farrell, 2004). The wi(AIC), and wi(BIC), represent the conditional probabilities that the

model Mi is the best of the set of models being compared.

In Craig et al. (in press), a likelihood-ratio test (Lamberts, 1997) was used to

determine whether the loss of fit associated with removal of error discounting, by setting ρ

to zero, was statistically significant. The likelihood-ratio test is given by:

χ2 = −2[lnL(restricted)− lnL(general)], (17)

where lnL(general) is the log-likelihood of the version of a model that includes annealing

(i.e., ρ > 0), whereas lnL(restricted) is the log-likelihood of the restricted version of a

model, with annealing set to zero.
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Table 1

Median (Mdn), mean (M), and standard deviation (SD) of estimated parameter values

across participants and negative log-likelihood values (-lnL) for the fits with GCM for each

condition of both experiments.

Exp. Cond. Parameters

γ c − lnL

Mdn M SD Mdn M SD

1 Early 2.55 2.37 1.86 1.42 13.20 20.76 5939.48

Mid 1.07 1.11 0.71 2.90 9.87 10.96 6163.92

Late 1.19 1.74 1.34 1.43 5.46 8.81 5924.28

2 Early 1.55 1.57 1.04 2.09 9.23 11.30 5321.91

Late 1.50 1.67 0.87 2.10 6.25 9.92 3946.33
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Table 2

Median (Mdn), mean (M), and standard deviation (SD) of estimated parameter values

across participants and negative log-likelihood values (-lnL) for the fits of the MAC model

with annealing on and off for each condition of both experiments.

Exp. Cond. Parameters

ρ b − lnL

Mdn M SD Mdn M SD

1 Early 0.194 7.795 25.704 0.43 0.41 0.22 6425.07

Mid 0.414 36.089 49.447 0.45 0.47 0.18 5963.39

Late 0.497 14.751 36.122 0.39 0.54 0.51 6182.40

Early 0. 0. 0. 0.35 0.35 0.23 6663.88

Mid 0. 0. 0. 0.44 0.50 0.40 6171.74

Late 0. 0. 0. 0.34 0.41 0.22 6420.13

2 Early 0.812 41.810 51.368 0.47 0.43 0.19 5337.18

Late 1.004 13.287 32.690 0.46 0.51 0.13 3693.88

Early 0. 0. 0. 0.38 0.44 0.35 5647.71

Late 0. 0. 0. 0.40 0.44 0.15 3972.02
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Figure Captions

Figure 1. Observed slopes through response probabilities across all 4 training items in

Experiment 1 (solid lines and error bars), slopes predicted by GCM (solid lines and open

circles), and objective slopes (dotted lines). Error bars indicate 95% confidence intervals.

The three panels show the early (top), mid (middle), and late (bottom) condition,

respectively.

Figure 2. Observed slopes through response probabilities across all 4 training items in

Experiment 2 (solid lines and error bars), slopes predicted by GCM (solid lines and open

circles), and objective slopes (dotted lines). Error bars indicate 95% confidence intervals.

The two panels show the early (top) and late (bottom) condition, respectively.

Figure 3. Observed slopes through response probabilities across all 4 training items in

Experiment 1 (solid lines and error bars), slopes predicted by the MAC model (solid lines

and open circles), and objective slopes (dotted lines). Error bars indicate 95% confidence

intervals. The three panels show the early (top), mid (middle) and late (bottom)

condition, respectively.

Figure 4. Observed slopes through response probabilities across all 4 training items in

Experiment 2 (solid lines and error bars), slopes predicted by the MAC model (solid lines

and open circles), and objective slopes (dotted lines). Error bars indicate 95% confidence

intervals. The two panels show the early (top) and late (bottom) condition, respectively.

Figure 5. Observed slopes through response probabilities across all 4 training items in

Experiment 1 (solid lines and error bars), slopes predicted by RASHNL (solid lines and

open circles), and objective slopes (dotted lines). RASHNL’s predictions were obtained

with the annealing parameter, ρ, being freely estimated. Error bars indicate 95%
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confidence intervals. The three panels show the early (top), mid (middle), and late

(bottom) condition, respectively.

Figure 6. Observed slopes through response probabilities across all 4 training items in

Experiment 2 (solid lines and error bars), slopes predicted by RASHNL (solid lines and

open circles), and objective slopes (dotted lines). RASHNL’s predictions were obtained

with the annealing parameter, ρ, being freely estimated. Error bars indicate 95%

confidence intervals. The two panels show the early (top) and late (bottom) condition,

respectively.

Figure 7. Observed slopes through response probabilities across all 4 training items in

Experiment 1 (solid lines and error bars), slopes predicted by rATRIUM (solid lines and

open circles), and objective slopes (dotted lines). rATRIUM’s predictions were obtained

with the annealing parameter, ρ, being freely estimated. Error bars indicate 95%

confidence intervals. The three panels show the early (top), mid (middle), and late

(bottom) condition, respectively.

Figure 8. Observed slopes through response probabilities across all 4 training items in

Experiment 2 (solid lines and error bars), slopes predicted by rATRIUM (solid lines and

open circles), and objective slopes (dotted lines). rATRIUM’s predictions were obtained

with the annealing parameter, ρ, being freely estimated. Error bars indicate 95%

confidence intervals. The two panels show the early (top) and late (bottom) condition,

respectively.
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