
Supplementary material to Hierarchical diffusion models for

two-choice response times :
I. Software implementation of the hierarchical diffusion model

for two-choice response times

Joachim Vandekerckhove, Francis Tuerlinckx
Department of Psychology, University of Leuven

Michael Lee
Department of Cognitive Sciences, University of California, Irvine, CA

Abstract

In this document, we present wiener.odc and wienereta.odc, two pieces of
Component Pascal code that can be incorporated into the popular Bayesian
computation program WinBUGS (Lunn, Thomas, Best, & Spiegelhalter,
2000). With wiener.odc and wienereta.odc installed, WinBUGS’s full
range of general-purpose Markov chain Monte Carlo (MCMC) methods can
be applied to the Wiener diffusion’s two-choice reaction time distribution.

This document is a supplement to Vandekerckhove, Tuerlinckx, and Lee (in press).
Its purpose is to instruct the reader on how to apply a hierarchical diffusion model (HDM)
using freely available software. The main software package to use is WinBUGS, a popular
Bayesian computation program (Lunn et al., 2000). WinBUGS allows a user to apply
Bayesian models in a very straightforward manner, requiring only that a list of model
assumptions is explicitly written down. From these mode assumptions, WinBUGS will
select an appropriate sampling algorithm and produce samples from the joint posterior
distribution of all parameters.

In what follows, we will first provide instructions on the installation and use of
wiener.odc and wienereta.odc. We also provide some example code for a basic analysis
and some more advanced examples. We will finish with some warnings regarding
(computational) limitations to the code.

This research was funded by grants GOA/00/02–ZKA4511, GOA/2005/04–ZKB3312, IUAP P5/24, and
K.2.215.07.N.01. This paper is part of the doctoral project of JV. This research was conducted utilizing high
performance computational resources provided by the University of Leuven, http://ludit.kuleuven.be/
hpc. We are further indebted to Microsoft Corporation and Dell Inc. for generously providing us with
additional computing resources. Correspondence concerning this article may be addressed to: Joachim
Vandekerckhove, University of Leuven, Department of Psychology, Tiensestraat 102 B3713, B–3000 Leuven,
Belgium; ph: +3216326118; fax: +3216325993; e: joachim.vandekerckhove@psy.kuleuven.be

SOFTWARE IMPLEMENTATION OF THE HDM 2

Installing the files

The wiener.odc and wienereta.odc files are released under a non-exclusive,
non-transferrable license, which is included in the source code files. The files can be
obtained from http://ppw.kuleuven.be/okp/software/wienerodc/.

Required materials

In order to use these files, you need to download and install three pieces of software,
all of which are freely available on the internet. Install them in the order given. If you
already have BlackBox installed, read the WinBUGS development page for instructions
(http://www.winbugs-development.org.uk/).

1. WinBUGS. This is the basic program you will be using. It can be downloaded
from http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml. You need to
register to get a key, but registration is free. Download and install the most recent version
(at the time of writing, version 1.4.3).

2. WinBUGS Development Interface (WBDev). To be downloaded via
http://www.winbugs-development.org.uk/. Unzip the executable to your WinBUGS
directory. Then open, with WinBUGS, the wbdev 01 09 04.txt file that has appeared
there and follow the instructions at the top of the file.

3. BlackBox Component Builder. This is an integrated development environment for
programs written in Component Pascal (as WinBUGS is). It can be freely downloaded
from http://www.oberon.ch/blackbox.html. This page also has a tutorial on
Component Pascal, which may be useful in case you would like to write your own
distributions or adapt the wiener.odc file. The most recent version of this program is 1.5
at the time of writing. Note that BlackBox Component Builder only runs on Windows
platforms.

Download and install these three programs. Install WinBUGS in /Program

Files/WinBUGS and BlackBox in /Program Files/BlackBox Component Builder 1.5.
WBDev will have created its own directory /WinBUGS/WBDev.

Preparing BlackBox and compiling the ODC files

In your browser, open the WinBUGS directory and select all files (Ctrl+A) and
copy them (Ctrl+C). Then open the BlackBox directory and paste those files there
(Ctrl+V). Select “Yes to all” if asked about replacing files. Once this is done, you will be
able to open BlackBox and run WinBUGS from inside it.

Now copy the files wiener.odc and wienereta.odc to the /BlackBox Component

Builder 1.5/WBDev/Mod directory and then use BlackBox to open it. Press Ctrl+K to
compile the distribution.

Now open the file /BlackBox Component Builder

1.5/WBDev/Rsrc/Distributions.odc and add the following lines of text to the end of
the file (right above the END statement):

s ∼ "dwiener"(s, s, s, s)I(s, s) "WBDevWiener.Install"

s ∼ "dwiener.eta"(s, s, s, s, s)I(s, s) "WBDevWienerEta.Install".

Restart BlackBox to begin using the new distributions.

SOFTWARE IMPLEMENTATION OF THE HDM 3

Using the distribution

Difference between wiener.odc and wienereta.odc

It is a common practice to assume trial-to-trial variability of the diffusion model
parameters. While this is in principle easy in a Bayesian context, numerical problems arise
in the wiener.odc function that make that variability in drift rate becomes difficult to
estimate. For this reason, we also provide wienereta.odc. This file directly implements a
diffusion model with trial-to-trial variability in drift rate (using the logarithm of Eq. 30 in
Tuerlinckx, 2004, for the correct PDF for this case) and is numerically more robust for
this case. In all other respects, the files are the same.

The mathematical forms of the distribution functions are

Wiener(t, x = 0|α, τ, ζinit, δ) =

πs2

α2
exp

(

−
ζinitδ

s2

) ∞
∑

j=1

j sin

(

πjζinit

α

)

exp

[

−
1

2

(

δ2

s2
+

π2j2s2

α2

)

(t − τ)

]

(1)

for wiener.odc, and

WienerEta(t, x = 0|α, τ, ζinit, ν, η) =

πs2

α2
exp

[

−
1

2

ν2(t − τ)

(t − τ)η2 + s2

]

1
√

(t−τ)η2

s2 + 1
exp

−
1

2

(

2νζinit −
ζ2

init
η2

s2

)

[(t − τ)η2] + s2

×
∞

∑

j=1

j sin

(

πjζinit

α

)

exp

[

−
1

2

(

π2j2s2

α2

)

(t − τ)

]

(2)

for wienereta.odc. In both cases, the x = 1 case is obtained by substituting ζinit with
α − ζinit and ξ or ν with −ξ and −ν, and s is hard-coded to 0.1.

Formatting two-choice reaction time data

As user–contributed distributions in WinBUGS are necessarily unidimensional, we
need to apply a trick to get it to accept the bivariate diffusion PDF. Consider that one
dimension of the PDF is binary (response, denoted xi), and the other is defined only on
the positive half–line (reaction time, denoted ti). It follows that a distribution on the full
real line is defined by:

yi =

{

ti if xi = 1
−ti if xi = 0

When using wiener.odc or wienereta.odc, you will need to code your two–choice
reaction time to match the format of yi. The functions will internally convert the negative
response times to positive–valued error responses and treat the distribution as bivariate
for the calculation of the likelihood value.

SOFTWARE IMPLEMENTATION OF THE HDM 4

Forcing specific samplers in WinBUGS

WinBUGS is a so-called expert system that decides on the basis of a fixed set of
rules which sampling algorithm is appropriate to use (see the section “Introduction >

MCMC Methods” in the WinBUGS manual). However, sometimes WinBUGS’ initial
choices cause numerical under- or overflow when the Wiener distribution is used. In these
situations, the choice of sampler can be adapted by opening the file /BlackBox

Component Builder 1.5/Updater/Rsrc/Methods.odc (see “Changing MCMC Defaults”
in the WinBUGS manual). In this list, the entries for “1 real non linear” and “9 log
concave” are most relevant for hierarchical diffusion models. Changing the default settings
to “UpdaterMetnormal” forces the application of a Metropolis-Hastings algorithm,
improving numerical stability in some situations (at the cost of some computation speed).

If numerical issues occur, it is useful to find out which sampler is causing the
problems. This can be discovered by accessing the “Info > Node Info” menu and selecting
‘Methods’ after entering the name of the node.

Examples of usage

Basic usage in WinBUGS

In order to implement wiener.odc, simply use a line like

s ∼ dwiener(alpha, zinit, tau, delta)

in your WinBUGS code where zinit is the starting point in absolute value (i.e., αβ).
Below we give a simple example for a data set with nc conditions (labeled 1, . . . , nc) and a
total of N data points. The responses (properly formatted, in seconds, with positive and
negative numbers) are stored in the variable y and condition indicators are in cond. This
model assumes boundary separation alpha, bias beta, and nondecision time tau to be
constant across conditions, but allows drift rate delta to differ (i.e., a fixed effect of
condition on drift rate).

Fit a simple Wiener diffusion model {

Define priors on parameters

beta ~ dunif(0.1,0.9)

tau ~ dunif(0.05,1.00)

alpha ~ dunif(0.03,0.25)

Insert a ‘plate’ to define multiple deltas

for (r in 1:nc)

{

delta[r] ~ dunif(-0.75,0.75)

}

Compute zinit from alpha and beta

zinit <- alpha*beta

Connect the data to the Wiener process

SOFTWARE IMPLEMENTATION OF THE HDM 5

for (i in 1:N)

{

y[i] ~ dwiener(alpha,tau,zinit,delta[cond[i]])

}

}

Advanced usage 1: Mixed model on nondecision time

In many cases, it is desirable to allow a parameter to vary from trial to trial
according to a certain distribution (i.e., to use a “mixed model”). In the classical
statistical framework, this leads to complicated integrals in the likelihood function. For
example, to allow the nondecision time parameter to vary over trials, the likelihood
function for conditions p = 1, . . . , P and items i = 1, . . . , I becomes complicated as in
Equation 3, where the Wiener PDF is given in Equation 1 and TN(µ, σ, L, U) indicates
the truncated normal distribution with mean µ, standard deviation σ and lower and upper
bounds L and U , respectively.

L(t(ip), x(ip)|α(p), ζ(p), δ(p), µτ , σ
2
τ , L, U) =

P
∏

p=1

I
∏

i=1

∫ +∞

−∞

Wiener(t(ip), x(ip)|α(p), τ, ζ(p), δ(p))×

TN
(

τ |µτ , σ
2
τ , L, U

)

dτ (3)

In a classical statistical context, this integration significantly increases the
computational cost of the likelihood function, which needs to be evaluated many times in
order to numerically find the parameters corresponding to its maximum (see, e.g.,
Vandekerckhove & Tuerlinckx, 2007). In a Bayesian context, however, this integration can
be performed by the MCMC algorithm, and does not pose further computational issues.
The following code performs just such an analysis in WinBUGS, where

Y (ij) ∼ W
(

α(i), β, τ(ij), δ
)

and
τ(ij) ∼ TN

(

θ, χ2, 0, 1
)

.

Fit a Wiener diffusion model with mixing over nondecision time {

Define priors on parameters

delta ~ dunif(-0.9,0.9) # assume only one drift rate now

beta ~ dunif(0.01,0.99)

but suppose different boundary separations

for (i in 1:nc)

SOFTWARE IMPLEMENTATION OF THE HDM 6

{

alpha[i] ~ dunif(0.03,0.40)

zinit[i] <- alpha[i]*beta

}

Use a truncated normal distribution for tau, with mean theta and

standard deviation chi

theta ~ dunif(0.05,0.80)

chi ~ dgamma(0.001,0.001)

Note that, for the parametrization of the normal distribution,

WinBUGS uses 1/variance (precision) instead of the standard

deviation

precision <- pow(chi,-2)

Connect the data to the Wiener process but add the tau

distribution as well

for (i in 1:N)

{

Use I(X,Y) to truncate below X and above Y

tau[i] ~ dnorm(theta,precision)I(0,1)

y[i] ~ dwiener(alpha[cond[i]],tau[i],zinit[cond[i]],delta)

}

}

Advanced usage 2: Mixed model on drift rate

In order to apply a mixed model on drift rate, the above method may lead to
numerical instability in the computation of the PDF. For this reason, we have also
provided wienereta.odc, which is optimized for this case. In this implementation, the
drift rate δ for each individual trial is assumed to be a draw from a normal distribution
with mean ν and standard deviation η. Accordingly, when using the distribution, a fifth
input parameter is required. Thus, in order to use wienereta.odc, type

s ∼ dwiener.eta(alpha, zeta, tau, nu, eta)

The parameter η (eta) should be restricted (in its prior) to be positive. The following is
some example code for using wienereta.odc.

Fit a Wiener diffusion model {

Define priors on parameters

beta ~ dunif(0.01,0.99)

tau ~ dunif(0.05,0.80)

alpha ~ dunif(0.03,0.50)

nu ~ dunif(-0.6,0.6)

SOFTWARE IMPLEMENTATION OF THE HDM 7

eta ~ dunif(0,0.4)

Compute zinit from alpha and beta

zinit <- alpha*beta

Connect the data to the Wiener process

for (i in 1:N)

{

y[i] ~ dwiener.eta(a,ter,z,v,eta)

}

}

Advanced usage 3: Posterior predictive values

The wiener.odc and wienereta.odc files are equipped with efficient simulators for
two–choice reaction time data under a Wiener diffusion model (Tuerlinckx, Maris, Ratcliff,
& De Boeck, 2001). This sampler has two uses. Firstly, it can be employed in a simulation
study (e.g., for debugging, power analysis, etc.). Secondly, and more importantly, it can
be used to generate posterior predictive values (Gelman, Carlin, Stern, & Rubin, 2004).
Applying this in WinBUGS is straightforward, and a simple example is given below.
WinBUGS can then be made to output these posterior predictive samples to a so-called
coda file, which can be read by an external program (e.g., MATLAB or R), which can
then compute summary statistics on the posterior predictives and compare the
distributions of these samples to the values found in the data.

Fit a Wiener diffusion model {

Define priors on parameters

delta ~ dunif(-0.9,0.9)

beta ~ dunif(0.01,0.99)

alpha ~ dunif(0.03,0.50)

zinit <- alpha*beta

tau ~ dunif(0.05,0.80)

Connect the data to the Wiener process

for (i in 1:N)

{

y[i] ~ dwiener(alpha,tau,zinit,delta)

}

Use the ’cut’ function to prevent WinBUGS from including

the PPF in the posterior

alpha.ppf <- cut(alpha)

tau.ppf <- cut(tau)

zinit.ppf <- cut(zinit)

delta.ppf <- cut(delta)

Generate the PPF with the Wiener sampler

SOFTWARE IMPLEMENTATION OF THE HDM 8

for (i in 1:N)

{

ppf[i] ~ dwiener(alpha.ppf,tau.ppf,zinit.ppf,delta.ppf)

}

}

Known issues

The software has some computational limits. Firstly, since evaluating the Wiener
PDF requires much computation, any analysis will be relatively slow (depending on the
size of the data set, the complexity of the hierarchical model, and of course the hardware,
a real-life analysis may take hours or even days). The same is true for the sample
generator for the Wiener PDF if posterior predictives are requested. Computation time
can be reduced by distributing the computation over as many processors as possible (i.e.,
run one chain per processor; sometimes it is possible to split data sets that have no
parameters in common). In the applications, we sometimes observed high autocorrelation
within sample chains. While this in itself is not a severe problem, it is inefficient as it
takes longer chains to walk through the entire region of the distribution.

Another issue occurs when extreme values are provided for certain parameters (in
particular, those pertaining to the drift rate). This may cause numerical over- or
underflow (i.e., real nonzero values that are so extreme that the software cannot
distinguish them from zero or infinity), which makes WinBUGS crash (usually with the
trap message “undefined real result”). Extreme values can be disallowed by truncating the
relevant priors to a reasonable range.

A final issue occurs when WinBUGS’ built-in slice sampler gets stuck (resulting in
the error message “Could not bracket slice for node”). This can be dealt with by forcing
WinBUGS to use a Metropolis-Hastings sampler instead of the slice sampler.

References

Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2004). Bayesian data analysis (2nd ed.).
Boca Raton, FL: Chapman & Hall/CRC.

Lunn, D., Thomas, A., Best, N., & Spiegelhalter, D. (2000). WinBUGS — a Bayesian modelling
framework: concepts, structure, and extensibility. Statistics and Computing , 10 , 325–337.

Tuerlinckx, F. (2004). The efficient computation of the distribution function of the diffusion
process. Behavior Research Methods, Instruments, & Computers, 36 , 702-716.

Tuerlinckx, F., Maris, E., Ratcliff, R., & De Boeck, P. (2001). A comparison of four methods for
simulating the diffusion process. Behavior Research Methods, Instruments, & Computers,
33 , 443–456.

Vandekerckhove, J., & Tuerlinckx, F. (2007). Fitting the Ratcliff diffusion model to experimental
data. Psychonomic Bulletin and Review , 14 , 1011–1026.

Vandekerckhove, J., Tuerlinckx, F., & Lee, M. D. (in press). Hierarchical diffusion models for
two-choice response times. Psychological Methods.

